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PROLOGUE 

THE VIRTUAL UNREALITY MACHINE 

I have a dream. 

I am surrounded by-nothing. Not empty space, for there 

is no space to be empty. Not blackness, for there is nothing to 

be black. Simply an absence, waiting to become a presence. I 

think commands: let there be space. But what kind of space? I 

have a choice: three-dimensional space, multidimensional 

space, even curved space. 

I choose. 

Another command, and the space is filled with an all

pervading fluid, which swirls in waves and vortices, here a 

placid swell, there a frothing, turbulent maelstrom. 

I paint space blue, draw white streamlines in the fluid to 

bring out the flow patterns. 

I place a small red sphere in the fluid. It hovers, unsup

ported, ignorant of the chaos around it, until I give the word. 

Then it slides off along a streamline. I compress myself to one 

hundredth of my size and will myself onto the surface of the 

sphere, to get a bird's-eye view of unfolding events. Every few 

seconds, I place a green marker in the flow to record the 

sphere's passing. If I touch a marker, it blossoms like a time-
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viii PROLOGUE 

lapse film of a desert cactus when the rains come-and on 

every petal there are pictures, numbers, symbols. The sphere 

can also be made to blossom, and when it does, those pic

tures, numbers, and symbols change as it moves. 

Dissatisfied with the march of its symbols, I nudge the 

sphere onto a different streamline, fine-tuning its position 

until I see the unmistakable traces of the singularity I am 

seeking. I snap my fingers, and the sphere extrapolates itself 

into its own future and reports back what it finds. Promising ... 

Suddenly there is a whole cloud of red spheres, all being car

ried along by the fluid, like a shoal of fish that quickly 

spreads, swirling, putting out tendrils, flattening into sheets. 

Then more shoals of spheres join the game-gold, purple, 

brown, silver, pink .... I am in danger of running out of col

ors. Multicolored sheets intersect in a complex geometric 

form. I freeze it, smooth it, paint it in stripes. I banish the 

spheres with a gesture. I call up markers, inspect their 

unfolded petals, pull some off and attach them to a translu

cent grid that has materialized like a landscape from thinning 

mist. 

Yes! 

I issue a new command. "Save. Title: A new chaotic phe

nomenon in the three-body problem. Date: today." 

Space collapses back to nonexistent void. Then, the morn

ing's research completed, I disengage from my Virtual Unreal

ity Machine and head off in search of lunch. 

This particular dream is very nearly fact. We already have 

Virtual Reality systems that simulate events in "normal" 

space. I call my dream Virtual Unreality because it simulates 

anything that can be created by the mathematician's fertile 
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imagination. Most of the bits and pieces of the Virtual Unreal

ity Machine exist already. There is computer-graphics soft

ware that can "fly" you through any chosen geometrical 

object, dynamical-systems software that can track the evolv

ing state of any chosen equation, symbolic-algebra software 

that can take the pain out of the most horrendous calcula

tions-and get them right. It is only a matter of time before 

mathematicians will be able to get inside their own creations. 

But, wonderful though such technology may be, we do not 

need it to bring my dream to life. The dream is a reality now, 

present inside every mathematician's head. This is what 

mathematical creation feels like when you're doing it. I've 

resorted to a little poetic license: the objects that are found in 

the mathematician's world are generally distinguished by 

symbolic labels or names rather than colors. But those labels 

are as vivid as colors to those who inhabit that world. In fact, 

despite its colorful images, my dream is a pale shadow of the 

world of imagination that every mathematican inhabits-a 

world in which curved space, or space with more than three 

dimensions, is not only commonplace but inevitable. You 

probably find the images alien and strange, far removed from 

the algebraic symbolism that the word "mathematics" con

jures up. Mathematicians are forced to resort to written sym

bols and pictures to describe their world-even to each other. 

But the symbols are no more that world than musical notation 

is music. 

Over the centuries, the collective minds of mathematicians 

have created their own universe. I don't know where it is situ

ated-I don't think that there is a "where" in any normal 

sense of the word-but I assure you that this mathematical 

universe seems real enough when you're in it. And, not 
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despite its peculiarities but because of them, the mental uni

verse of mathematics has provided human beings with many 

of their deepest insights into the world around them. 

I am going to take you sightseeing in that mathematical 

universe. I am going to try to equip you with a mathemati

cian's eyes. And by so doing, I shall do my best to change the 

way you view your own world. 
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CHAPTER I 

THE NATURAL ORDE'R 

We live in a universe of patterns. 

Every night the stars move in circles across the sky. The 

seasons cycle at yearly intervals. No two snowflakes are ever 

exactly the same, but they all have sixfold symmetry. Tigers 

and zebras are covered in patterns of stripes, leopards and 

hyenas are covered in patterns of spots. Intricate trains of 

waves march across the oceans; very similar trains of sand 

dunes march across the desert. Colored arcs of light adorn the 

sky in the form of rainbows, and a bright circular halo some

times surrounds the moon on winter nights. Spherical drops 

of water fall from clouds. 

Human mind and culture have developed a formal system 

of thought for recognizing, classifying, and exploiting pat

terns. We call it mathematics. By using mathematics to orga

nize and systematize our ideas about patterns, we have dis

covered a great secret: nature's patterns are not just there to be 

admired, they are vital clues to the rules that govern natural 

processes. Four hundred years ago, the German astronomer 

Johannes Kepler wrote a small book, The Six-Cornered 

Snowflake, as a New Year's gift to his sponsor. In it he argued 
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that snowflakes must be made by packing tiny identical units 

together. This was long before the theory that matter is made 

of atoms had become generally accepted. Kepler performed 

no experiments; he just thought very hard about various bits 

and pieces of common knowledge. His main evidence was the 

sixfold symmetry of snowflakes, which is a natural conse

quence of regular packing. If you place a large number of 

identical coins on a table and try to pack them as closely as 

possible, then you get a honeycomb arrangement, in which 

every coin-except those at the edges-is surrounded by six 

others, arranged in a perfect hexagon. 

The regular nightly motion of the stars is also a clue, this 

time to the fact that the Earth rotates. Waves and dunes are 

clues to the rules that govern the flow of water, sand, and air. 

The tiger's stripes and the hyena's spots attest to mathemati

cal regularities in biological growth and form. Rainbows tell 

us about the scattering of light, and indirectly confirm that 

raindrops are spheres. Lunar haloes are clues to the shape of 

ice crystals. 

There is much beauty in nature's clues, and we can all rec

ognize it without any mathematical training. There is beauty, 

too, in the mathematical stories that start from the clues and 

deduce the underlying rules and regularities, but it is a differ

ent kind of beauty, applying to ideas rather than things. Math

ematics is to nature as Sherlock Holmes is to evidence. When 

presented with a cigar butt, the great fictional detective could 

deduce the age, profession, and financial state of its owner. 

His partner, Dr. Watson, who was not as sensitive to su~h 

matters, could only look on in baffled admiration, until the 

master revealed his chain of impeccable logic. When pre

sented with the evidence of hexagonal snowflakes, mathe-
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maticians can deduce the atomic geometry of ice crystals. If 

you are a Watson, it is just as baffling a trick, but I want to 

show you what it is like if you are a Sherlock Holmes. 

Patterns possess utility as well as beauty. Once we have 

learned to recognize a background pattern, exceptions sud

denly stand out. The desert stands still, but the lion moves. 

Against the circling background of stars, a small number of 

stars that move quite differently beg to be singled out for spe

cial attention. The Greeks called them planetes, meaning 

"wanderer," a term retained in our word "planet." It took a lot 

longer to understand the patterns of planetary motion than it 

did to work out why stars seem to move in nightly circles. 

One difficulty is that we are inside the Solar System, moving 

along with it, and things that look simple from outside often 

look much more complicated from inside. The planets were 

clues to the rules behind gravity and motion. 

We are still learning to recognize new kinds of pattern. 

Only within the last thirty years has humanity become explic

itly aware of the two types of pattern now known as fractals 

and chaos. Fractals are geometric shapes that repeat their 

structure on ever-finer scales, and I will say a little about 

them toward the end of this chapter; chaos is a kind of appar

ent randomness whose origins are entirely deterministic, and 

I will say a lot about that in chapter 8. Nature "knew about" 

these patterns billions of years ago, for clouds are fractal and 

weather is chaotic. It took humanity a while to catch up. 

The simplest mathematical objects are numbers, and the 

simplest of nature's patterns are numerical. The phases of the 

moon make a complete cycle from new moon to full moon 

and back again every twenty-eight days. The year is three 

hundred and sixty-five days long-roughly. People have two 
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legs, cats have four, insects have six, and spiders have eight. 

Starfish have five arms (or ten, eleven, even seventeen, 

depending on the species). Clover normally has three leaves: 

the superstition that a four-leaf clover is lucky reflects a deep

seated belief that exceptions to patterns are special. A very 

curious pattern indeed occurs in the petals of flowers. In 

nearly all flowers, the number of petals is one of the numbers 

that occur in the strange sequence 3, 5, 8, 13, 21, 34, 55, 89. For 

instance, lilies have three petals, buttercups have five, many 

delphiniums have eight, marigolds have thirteen, asters have 

twenty-one, and most daisies have thirty-four, fifty-five, or 

eighty-nine. You don't find any other numbers anything like as 

often. There is a definite pattern to those numbers, but one that 

takes a little digging out: each number is obtained by adding 

the previous two numbers together. For example, 3 + 5 = 8, 

5 + 8 = 13, and so on. The same numbers can be found in the 

spiral patterns of seeds in the head of a sunflower. This par

ticular pattern was noticed many centuries ago and has been 

widely studied ever since, but a really satisfactory explana

tion was not given until 1993. It is to be found in chapter 9. 

Numerology is the easiest-and consequently the most 

dangerous-method for finding patterns. It is easy because 

anybody can do it, and dangerous for the same reason. The 

difficulty lies in distinguishing significant numerical patterns 

from accidental ones. Here's a case in point. Kepler was fasci

nated with mathematical patterns in nature, and he devoted 

much of his life to looking for them in the behavior of the 

planets. He devised a simple and tidy theory for the existence 

of precisely six planets (in his time only Mercury, Venus, 

Earth, Mars, Jupiter, and Saturn were known). He also discov

ered a very strange pattern relating the orbital period of a 
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planet-the time it takes to go once around the Sun-to its 

distance from the Sun. Recall that the square of a number is 

what you get when you multiply it by itself: for example, the 

square of 4 is 4 x 4 = 16. Similarly, the cube is what you get 

when you multiply it by itself twice: for example, the cube of 

4 is 4 x 4 x 4 = 64. Kepler found that if you take the cube of 

the distance of any planet from the Sun and divide it by the 

square of its orbital period, you always get the same number. 

It was not an especially elegant number, but it was the same 

for all six planets. 

Which of these numerological observations is the more 

significant? The verdict of posterity is that it is the second 

one, the complicated and rather arbitrary calculation with 

squares and cubes. This numerical pattern was one of the key 

steps toward Isaac Newton's theory of gravity, which has 

explained all sorts of puzzles about the motion of stars and 

planets. In contrast, Kepler's neat, tidy theory for the number 

of planets has been buried without trace. For a start, it must 

be wrong, because we now know of nine planets, not six. 

There could be even more, farther out from the Sun, and 

small enough and faint enough to be undetectable. But more 

important, we no longer expect to find a neat, tidy theory for 

the number of planets. We think that the Solar System con

densed from a cloud of gas surrounding the Sun, and the 

number of planets presumably depended on the amount of 

matter in the gas cloud, how it was distributed, and how fast 

and in what directions it was moving. An equally plausible 

gas cloud could have given us eight planets, or eleven; the 

number is accidental, depending on the initial conditions of 

the gas cloud, rather than universal, reflecting a general law of 

nature. 
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The big problem with numerological pattern-seeking is 

that it generates millions of accidentals for each universal. 

Nor is it always obvious which is which. For example, there 

are three stars, roughly equally spaced and in a straight line, 

in the belt of the constellation Orion. Is that a clue to a signifi

cant law of nature? Here's a similar question. 10, Europa, and 

Ganymede are three of Jupiter's larger satellites. They orbit 

the planet in, respectively, 1.77, 3.55, and 7.16 days. Each of 

these numbers is almost exactly twice the previous one. Is 

that a significant pattern? Three stars in a row, in terms of 

position; three satellites "in a row" in terms of orbital period. 

Which pattern, if either, is an important clue? I'll leave you to 

think about that for the moment and return to it in the next 

chapter. 

In addition to numerical patterns, there are geometric 

ones. In fact this book really ought to have been called 

Nature's Numbers and Shapes. I have two excuses. First, the 

title sounds better without the "and shapes." Second, mathe

matical shapes can always be reduced to numbers-which is 

how computers handle graphics. Each tiny dot in the picture 

is stored and manipulated as a pair of numbers: how far the 

dot is along the screen from right to left, and how far up it is 

from the bottom. These two numbers are called the coordi

nates of the dot. A general shape is a collection of dots, and 

can be represented as a list of pairs of numbers. However, it is 

often better to think of shapes as shapes, because that makes 

use of our powerful and intuitive visual capabilities, whereas 

complicated lists of numbers are best reserved for our weaker 

and more laborious symbolic abilities. 

Until recently, the main shapes that appealed to mathe

maticians were very simple ones: triangles, squares, pen-
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tagons, hexagons, circles, ellipses, spirals, cubes, spheres, 

cones, and so on. All of these shapes can be found in nature, 

although some are far more common, or more evident, than 

others. The rainbow, for example, is a collection of circles, 

one for each color. We don't normally see the entire circle, 

just an arc; but rainbows seen from the air can be complete 

circles. You also see circles in the ripples on a pond, in the 

the human eye, and on butterflies' wings. 

Talking of ripples, the flow of fluids provides an inex

haustible supply of nature's patterns. There are waves of 

many different kinds-surging toward a beach in parallel 

ranks, spreading in a V-shape behind a moving boat, radiating 

outward from an underwater earthquake. Most waves are gre

garious creatures, but some-such as the tidal bore that 

sweeps up a river as the energy of the incoming tide becomes 

confined to a tight channel-are solitary. There are swirling 

spiral whirlpools and tiny vortices. And there is the appar

ently structureless, random frothing of turbulent flow, one 

of the great enigmas of mathematics and physics. There are 

similar patterns in the atmosphere, too, the most dramatic 

being the vast spiral of a hurricane as seen by an orbiting 

astronaut. 

There are also wave patterns on land. The most strikingly 

mathematical landscapes on Earth are to be found in the great 

ergs, or sand oceans, of the Arabian and Sahara deserts. Even 

when the wind blows steadily in a fixed direction, sand 

dunes form. The simplest pattern is that of transverse dunes, 

which-just like ocean waves-line up in parallel straight 

rows at right angles to the prevailing wind direction. Some

times the rows themselves become wavy, in which case they 

are called barchanoid ridges; sometimes they break up into 
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innumerable shield-shaped barchan dunes. If the sand is 

slightly moist, and there is a little vegetation to bind it 

together, then you may find parabolic dunes-shaped like a 

U, with the rounded end pointing in the direction of the 

wind. These sometimes occur in clusters, and they resemble 

the teeth of a rake. If the wind direction is variable, other 

forms become possible. For example, clusters of star-shaped 

dunes can form, each having several irregular arms radiating 

from a central peak. They arrange themselves in a random 

pattern of spots. 

Nature's love of stripes and spots extends into the animal 

kingdom, with tigers and leopards, zebras and giraffes. The 

shapes and patterns of animals and plants are a happy hunt

ing ground for the mathematically minded. Why, for example, 

do so many shells form spirals? Why are starfish equipped 

with a symmetric set of arms? Why do many viruses assume 

regular geometric shapes, the most striking being that of an 

icosahedron-a regular solid formed from twenty equilateral 

triangles? Why are so many animals bilaterally symmetric? 

Why is that symmetry so often imperfect, disappearing when 

you look at the detail, such as the position of the human heart 

or the differences between the two hemispheres of the human 

brain? Why are most of us right-handed, but not all of us? 

In addition to patterns of form, there are patterns of move

ment. In the human walk, the feet strike the ground in a regu

lar rhythm: left-right-Ieft-right-Ieft-right. When a four-legged 

creature-a horse, say-walks, there is a more complex but 

equally rhythmic pattern. This prevalence of pattern in loco

motion extends to the scuttling of insects, the flight of birds, 

the pulsations of jellyfish, and the wavelike movements of 

fish, worms, and snakes. The sidewinder, a desert snake, 
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moves rather like a single coil of a helical spring, thrusting its 

body forward in a series of S-shaped curves, in an attempt to 

minimize its contact with the hot sand. And tiny bacteria pro

pel themselves along using microscopic helical tails, which 

rotate rigidly, like a ship's screw. 

Finally, there is another category of natural pattern-one 

that has captured human imagination only very recently, but 

dramatically. This comprises patterns that we have only just 

learned to recognize-patterns that exist where we thought 

everything was random and formless. For instance, think 

about the shape of a cloud. It is true that meteorologists clas

sify clouds into several different morphological groups-cir

rus, stratus, cumulus, and so on-but these are very general 

types of form, not recognizable geometric shapes of a conven

tional mathematical kind. You do not see spherical clouds, or 

cubical clouds, or icosahedral clouds. Clouds are wispy, 

formless, fuzzy clumps. Yet there is a very distinctive pattern 

to clouds, a kind of symmetry, which is closely related to the 

physics of cloud formation. Basically, it is this: you can't tell 

what size a cloud is by looking at it. If you look at an ele

phant, you can tell roughly how big it is: an elephant the size 

of a house would collapse under its own weight, and one the 

size of a mouse would have legs that are uselessly thick. 

Clouds are not like this at all. A large cloud seen from far 

away and a small cloud seen close up could equally plausibly 

have been the other way around. They will be different in 

shape, of course, but not in any manner that systematically 

depends on size. 

This "scale independence" of the shapes of clouds has 

been verified experimentally for cloud patches whose sizes 

vary by a factor of a thousand. Cloud patches a kilometer 
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across look just like cloud patches a thousand kilometers 

across. Again, this pattern is a clue. Clouds form when water 

undergoes a "phase transition" from vapor to liquid, and 

physicists have discovered that the same kind of scale invari

ance is associated with all phase transitions. Indeed, this sta

tistical self-similarity, as it is called, extends to many other 

natural forms. A Swedish colleague who works on oil-field 

geology likes to show a slide of one of his friends standing up 

in a boat and leaning nonchalantly against a shelf of rock that 

comes up to about his armpit. The photo is entirely convinc

ing, and it is clear that the boat must have been moored at the 

edge of a rocky gully about two meters deep. In fact, the rocky 

shelf is the side of a distant fjord, some thousand meters high. 

The main problem for the photographer was to get both the 

foreground figure and the distant landscape in convincing 

focus. 

Nobody would try to play that kind of trick with an ele

phant. 

However, you can play it with many of nature's shapes, 

including mountains, river networks, trees, and very possibly 

the way that matter is distributed throughout the entire uni

verse. In the term made famous by the mathematician Benoit 

Mandelbrot, they are all fractals. A new science of irregular

ity-fractal geometry-has sprung up within the last fifteen 

years. I'm not going to say much about fractals, but the 

dynamic process that causes them, known as chaos, will be 

prominently featured. 

Thanks to the development of new mathematical theories, 

these more elusive of nature's patterns are beginning to reveal 

their secrets. Already we are seeing a practical impact as well 

as an intellectual one. Our newfound understanding of 



THE NATURAL ORDER II 

nature's secret regularities is being used to steer artificial 

satellites to new destinations with far less fuel than anybody 

had thought possible, to help avoid wear on the wheels of 

locomotives and other rolling stock, to improve the effective

ness of heart pacemakers, to manage forests and fisheries, 

even to make more efficient dishwashers. But most important 

of all, it is giving us a deeper vision of the universe in which 

we live, and of our own place in it. 





CHAPTER 2 

WHAT MATHEMATICS IS FOR 

We've now established the uncontroversial idea that nature is 

full of patterns. But what do we want to do with them? One 

thing we can do is sit back and admire them. Communing 

with nature does all of us good: it reminds us of what we are. 

Painting pictures, sculpting sculptures, and writing poems are 

valid and important ways to express our feelings about the 

world and about ourselves. The entrepreneur's instinct is to 

exploit the natural world. The engineer's instinct is to change 

it. The scientist's instinct is to try to understand it-to work 

out what's really going on. The mathematician's instinct is to 

structure that process of understanding by seeking generali

ties that cut across the obvious subdivisions. There is a little 

of all these instincts in all of us, and there is both good and 

bad in each instinct. 

I want to show you what the mathematical instinct has 

done for human understanding, but first I want to touch upon 

the role of mathematics in human culture. Before you buy 

something, you usually have a fairly clear idea of what you 

want to do with it. If it is a freezer, then of course you want it 

to preserve food, but your thoughts go well beyond that. How 

much food will you need to store? Where will the freezer have 

to fit? It is not always a matter of utility; you may be thinking 

II 
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of buying a painting, You still ask yourself where you are 

going to put it, and whether the aesthetic appeal is worth the 

asking price. It is the same with mathematics-and any other 

intellectual worldview, be it scientific, political, or religious. 

Before you buy something, it is wise to decide what you want 

it for. 

So what do we want to get out of mathematics? 

Each of nature's patterns is a puzzle, nearly always a deep 

one. Mathematics is brilliant at helping us to solve puzzles. It 

is a more or less systematic way of digging out the rules and 

structures that lie behind some observed pattern or regularity, 

and then using those rules and structures to explain what's 

going on. Indeed, mathematics has developed alongside our 

understanding of nature, each reinforcing the other. I've men

tioned Kepler's analysis of snowflakes, but his most famous 

discovery is the shape of planetary orbits. By performing a 

mathematical analysis of astronomical observations made by 

the contemporary Danish astronomer Tycho Brahe, Kepler 

was eventually driven to the conclusion that planets move in 

ellipses. The ellipse is an oval curve that was much studied 

by the ancient Greek geometers, but the ancient astronomers 

had preferred to use circles, or systems of circles, to describe 

orbits, so Kepler's scheme was a radical one at that time. 

People interpret new discoveries in terms of what is 

important to them. The message astronomers received when 

they heard about Kepler's new idea was that neglected ideas 

from Greek geometry could help them solve the puzzle of pre

dicting planetary motion. It took very little imagination for 

them to see that Kepler had made a huge step forward. All 

sorts of astronomical phenomena, such as eclipses, meteor 

showers, and comets, might yield to the same kind of mathe-
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matics. The message to mathematicians was quite different. It 

was that ellipses are really interesting curves. It took very lit

tle imagination for them to see that a general theory of curves 

would be even more interesting. Mathematicians could take 

the geometric rules that lead to ellipses and modify them to 

see what other kinds of curve resulted. 

Similarly, when Isaac Newton made the epic discovery 

that the motion of an object is described by a mathematical 

relation between the forces that act on the body and the accel

eration it experiences, mathematicians and physicists learned 

quite different lessons. However, before I can tell you what 

these lessons were I need to explain about acceleration. 

Acceleration is a subtle concept: it is not a fundamental quan

tity, such as length or mass; it is a rate of change. In fact, it is a 

"second order" rate of change-that is, a rate of change of a 

rate of change. The velocity of a body-the speed with which 

it moves in a given direction-is just a rate of change: it is the 

rate at which the body's distance from some chosen point 

changes. If a car moves at a steady speed of sixty miles per 

hour, its distance from its starting point changes by sixty 

miles every hour. Acceleration is the rate of change of veloc

ity. If the car's velocity increases from sixty miles per hour to 

sixty-five miles per hour, it has accelerated by a definite 

amount. That amount depends not only on the initial and 

final speeds, but on how quickly the change takes place. If it 

takes an hour for the car to increase its speed by five miles per 

hour, the acceleration is very small; if it takes only ten sec

onds, the acceleration is much greater. 

I don't want to go into the measurement of accelerations. 

My point here is more general: that acceleration is a rate of 

change of a rate of change. You can work out distances with a 
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tape measure, but it is far harder to work out a rate of change 

of a rate of change of distance. This is why it took humanity a 

long time, and the genius of a Newton, to discover the law of 

motion. If the pattern had been an obvious feature of dis

tances, we would have pinned motion down a lot earlier in 

our history. 

In order to handle questions about rates of change, New

ton-and independently the German mathematician Gottfried 

Leibniz-invented a new branch of mathematics, the calcu

lus. It changed the face of the Earth-literally and metaphori

cally. But, again, the ideas sparked by this discovery were dif

ferent for different people. The physicists went off looking for 

other laws of nature that could explain natural phenomena in 

terms of rates of change. They found them by the bucketful

heat, sound, light, fluid dynamics, elasticity, electricity, mag

netism. The most esoteric modern theories of fundamental 

particles still use the same general kind of mathematics, 

though the interpretation-and to some extent the implicit 

worldview-is different. Be that as it may, the mathemati

cians found a totally different set of questions to ask. First of 

all, they spent a long time grappling with what "rate of 

change" really means. In order to work out the velocity of a 

moving object, you must measure where it is, find out where 

it moves to a very short interval of time later, and divide the 

distance moved by the time elapsed. However, if the body is 

accelerating, the result depends on the interval of time you 

use. Both the mathematicians and the physicists had the same 

intuition about how to deal with this problem: the interval of 

time you use should be as small as possible. Everything 

would be wonderful if you could just use an interval of zero, 

but unfortunately that won't work, because both the distance 
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traveled and the time elapsed will be zero, and a rate of 

change of DID is meaningless. The main problem with nonzero 

intervals is that whichever one you choose, there is always a 

smaller one that you could use instead to get a more accurate 

answer. What you would really like is to use the smallest pos

sible nonzero interval of time-but there is no such thing, 

because given any nonzero number, the number half that size 

is also nonzero. Everything would work out fine if the interval 

could be made infinitely small-"infinitesimal." Unfortu

nately, there are difficult logical paradoxes associated with 

the idea of an infinitesimal; in particular, if we restrict our

selves to numbers in the usual sense of the word, there is no 

such thing. So for about two hundred years, humanity was in 

a very curious position as regards the calculus. The physicists 

were using it, with great success, to understand nature and to 

predict the way nature behaves; the mathematicians were 

worrying about what it really meant and how best to set it up 

so that it worked as a sound mathematical theory; and the 

philosophers were arguing that it was all nonsense. Every

thing got resolved eventually, but you can still find strong dif

ferences in attitude. 

The story of calculus brings out two of the main things that 

mathematics is for: providing tools that let scientists calculate 

what nature is doing, and providing new questions for mathe

maticians to sort out to their own satisfaction. These are the 

external and internal aspects of mathematics, often referred to 

as applied and pure mathematics (I dislike both adjectives, 

and I dislike the implied separation even more). It might 

appear in this case that the physicists set the agenda: if the 

methods of calculus seem to be working, what does it matter 

why they work? You will hear the same sentiments expressed 
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today by people who pride themselves on being pragmatists. I 

have no difficulty with the proposition that in many respects 

they are right. Engineers designing a bridge are entitled to use 

standard mathematical methods even if they don't know the 

detailed and often esoteric reasoning that justifies these meth

ods. But I, for one, would feel uncomfortable driving across 

that bridge if I was aware that nobody knew what justified 

those methods. So, on a cultural level, it pays to have some 

people who worry about pragmatic methods and try to find 

out what really makes them tick. And that's one of the jobs 

that mathematicians do. They enjoy it, and the rest of human

ity benefits from various kinds of spin-off, as we'll see. 

In the short term, it made very little difference whether 

mathematicians were satisfied about the logical soundness of 

the calculus. But in the long run the new ideas that mathe

maticians got by worrying about these internal difficulties 

turned out to be very useful indeed to the outside world. In 

Newton's time, it was impossible to predict just what those 

uses would be, but I think you could have predicted, even 

then, that uses would arise. One of the strangest features of 

the relationship between mathematics and the "real world," 

but also one of the strongest, is that good mathematics, what

ever its source, eventually turns out to be useful. There are all 

sorts of theories why this should be so, ranging from the 

structure of the human mind to the idea that the universe is 

somehow built from little bits of mathematics. My feeling is 

that the answer is probably quite simple: mathematics is the 

science of patterns, and nature exploits just about every pat

tern that there is. I admit that I find it much harder to offer a 

convincing reason for nature to behave in this manner. Maybe 

the question is back to front: maybe the point is that creatures 
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able to ask that kind of question can evolve only in a universe 

with that kind of structure .• 

Whatever the reasons, mathematics definitely is a useful 

way to think about nature. What do we want it to tell us about 

the patterns we observe? There are many answers. We want to 

understand how they happen; to understand why they hap

pen, which is different; to organize the underlying patterns 

and regularities in the most satisfying way; to predict how 

nature will behave; to control nature for our own ends; and to 

make practical use of what we have learned about our world. 

Mathematics helps us to do all these things, and often it is 

indispensable. 

For example, consider the spiral form of a snail shell. How 

the snail makes its shell is largely a matter of chemistry and 

genetics. Without going into fine points, the snail's genes 

include recipes for making particular chemicals and instruc

tions for where they should go. Here mathematics lets us do 

the molecular bookkeeping that makes sense of the different 

chemical reactions that go on; it describes the atomic struc

ture of the molecules used in shells, it describes the strength 

and rigidity of shell material as compared to the weakness 

and pliability of the snail's body, and so on. Indeed, without 

mathematics we would never have convinced ourselves that 

matter really is made from atoms, or have worked out how the 

atoms are arranged. The discovery of genes-and later of the 

molecular structure of DNA, the genetic material-relied 

heavily on the existence of mathematical clues. The monk 

Gregor Mendel noticed tidy numerical relationships in how 

'This explanation. and others. are discussed in The Collapse of Chaos. by 
Jack Cohen and Ian Stewart (New York: Viking. 1994). 
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the proportions of plants with different characters, such as 

seed color, changed when the plants were crossbred. This led 

to the basic idea of genetics-that within every organism is 

some cryptic combination of factors that determines many 

features of its body plan, and that these factors are somehow 

shuffled and recombined when passing from parents to off

spring. Many different pieces of mathematics were involved 

in the discovery that DNA has the celebrated double-helical 

structure. They were as simple as Chargaff's rules: the obser

vation by the Austrian-born biochemist Erwin Chargaff that 

the four bases of the DNA molecule occur in related propor

tions; and they are as subtle as the laws of diffraction, which 

were used to deduce molecular structure from X-ray pictures 

of DNA crystals. 

The question of why snails have spiral shells has a very 

different character. It can be asked in several contexts-in the 

short-term context of biological development, say, or the long

term context of evolution. The main mathematical feature of 

the developmental story is the general shape of the spiral. 

Basically, the developmental story is about the geometry of a 

creature that behaves in much the same way all the time, but 

keeps getting bigger. Imagine a tiny animal, with a tiny proto

shell attached to it. Then the animal starts to grow. It can 

grow most easily in the direction along which the open rim of 

the shell points, because the shell gets in its way if it tries to 

grow in any other direction. But, having grown a bit, it needs 

to extend its shell as well, for self-protection. So, of course, 

the shell grows an extra ring of material around its rim. As 

this process continues, the animal is getting bigger, so the size 

of the rim grows. The simplest result is a conical shell, such 

as you find on a limpet. But if the whole system starts with a 
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bit of a twist, as is quite likely, then the growing edge of the 

shell rotates slowly as well as expanding, and it rotates in an 

off-centered manner. The result is a cone that twists in an 

ever-expanding spiral. We can use mathematics to relate the 

resulting geometry to all the different variables-such as 

growth rate and eccentricity of growth-that are involved. 

If, instead, we seek an evolutionary explanation, then we 

might focus more on the strength of the shell, which conveys 

an evolutionary advantage, and try to calculate whether a long 

thin cone is stronger or weaker than a tightly coiled spiral. Or 

we might be more ambitious and develop mathematical models 

of the evolutionary process itself, with its combination of ran

dom genetic change-that is, mutations-and natural selection. 

A remarkable example of this kind of thinking is a com

puter simulation of the evolution of the eye by Daniel Nilsson 

and Susanne Pelger, published in 1994. Recall that conven

tional evolutionary theory sees changes in animal form as 

being the result of random mutations followed by subsequent 

selection of those individuals most able to survive and repro

duce their kind. When Charles Darwin announced this the

ory, one of the first objections raised was that complex struc

tures (like an eye) have to evolve fully formed or else they 

won't work properly (half an eye is no use at all), but the 

chance that random mutation will produce a coherent set of 

complex changes is negligible. Evolutionary theorists quickly 

responded that while half an eye may not be much use, a half

developed eye might well be. One with a retina but no lens, 

say, will still collect light and thereby detect movement; and 

any way to improve the detection of predators offers an evolu

tionary advantage to any creature that possesses it. What we 

have here is a verbal objection to the theory countered by a 
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verbal argument. But the recent computer analysis goes much 

further. 

It starts with a mathematical model of a flat region of cells, 

and permits various types of "mutation." Some cells may 

become more sensitive to light, for example, and the shape of 

the region of cells may bend. The mathematical model is set 

up as a computer program that makes tiny random changes of 

this kind, calculates how good the resulting structure is at 

detecting light and resolving the patterns that it "sees," and 

selects any changes that improve these abilities. During a sim

ulation that corresponds to a period of about four hundred 

thousand years-the blink of an eye, in evolutionary terms

the region of cells folds itself up into a deep, spherical cavity 

with a tiny iris like opening and, most dramatically, a lens. 

Moreover, like the lenses in our own eyes, it is a lens whose 

refractive index-the amount by which it bends light-varies 

from place to place. In fact, the pattern of variation of refrac

tive index that is produced in the computer simulation is very 

like our own. So here mathematics shows that eyes definitely 

can evolve gradually and naturally, offering increased sur

vival value at every stage. More than that: Nilsson and Pel

ger's work demonstrates that given certain key biological fac

ulties (such as cellular receptivity to light, and cellular 

mobility), structures remarkably similar to eyes will form-all 

in line with Darwin's principle of natural selection. The 

mathematical model provides a lot of extra detail that the ver

bal Darwinian argument can only guess at, and gives us far 

greater confidence that the line of argument is correct. 

I said that another function of mathematics is to organize 

the underlying patterns and regularities in the most satisfying 

way. To illustrate this aspect, let me return to the question 

raised in the first chapter. Which-if either-is significant: 



START 176 steps 538 steps 

808 steps 1033 steps 1225 steps 

1533 steps 1829 steps 

FIGURE t. 
Computer model of the evolution of an eye. Each step in the computa
tion corresponds to abOllt two hundred years of biological evolution. 
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the three-in-a-row pattern of stars in Orion's belt, or the three

in-a-row pattern to the periods of revolution of Jupiter's satel

lites? Orion first. Ancient human civilizations organized the 

stars in the sky in terms of pictures of animals and mythic 

heroes. In these terms, the alignment of the three stars in 

Orion appears significant, for otherwise the hero would have 

no belt from which to hang his sword. However, if we use 

three-dimensional geometry as an organizing principle and 

place the three stars in their correct positions in the heavens, 

then we find that they are at very different distances from the 

Earth. Their equispaced alignment is an accident, depending 

on the position from which they are being viewed. Indeed, the 

very word "constellation" is a misnomer for an arbitrary acci

dent of viewpoint. 

The numerical relation between the periods of revolution 

of 10, Europa, and Ganymede could also be an accident of 

viewpoint. How can we be sure that "period of revolution" 

has any significant meaning for nature? However, that numer

ical relation fits into a dynamical framework in a very signifi

cant manner indeed. It is an example of a resonance, which is 

a relationship between periodically moving bodies in which 

their cycles are locked together, so that they take up the same 

relative positions at regular intervals. This common cycle 

time is called the period of the system. The individual bodies 

may have different-but related-periods. We can work out 

what this relationship is. When a resonance occurs, all of the 

participating bodies must return to a standard reference posi

tion after a whole number of cycles-but that number can be 

different for each. So there is some common period for the 

system, and therefore each individual body has a period that 

is some whole-number divisor of the common period. In this 

case, the common period is that of Ganymede, 7.16 days. The 
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period of Europa is very close to half that of Ganymede, and 

that of 10 is close to one-quarter. 10 revolves four times around 

Jupiter while Europa revolves twice and Ganymede once, 

after which they are all back in exactly the same relative posi

tions as before. This is called a 4:2:1 resonance. 

The dynamics of the Solar System is full of resonances. 

The Moon's rotational period is (subject to small wobbles 

caused by perturbations from other bodies) the same as its 

period of revolution around the Earth-a 1:1 resonance of its 

orbital and its rotational period. Therefore, we always see the 

same face of the Moon from the Earth, never its "far side." 

Mercury rotates once every 58.65 days and revolves around 

the Sun every 87.97 days. Now, 2 x 87.97 = 175.94, and 3 x 

58.65 = 175.95, so Mercury's rotational and orbital periods are 

in a 2:3 resonance. (In fact, for a long time they were thought 

to be in 1:1 resonance, both being roughly 88 days, because of 

the difficulty of observing a planet as close to the Sun as Mer

cury is. This gave rise to the belief that one side of Mercury is 

incredibly hot and the other incredibly cold, which turns out 

not to be true. A resonance, however, there is-and a more 

interesting one than mere equality.) 

In between Mars and Jupiter is the asteroid belt, a broad 

zone containing thousands of tiny bodies. They are not uni

formly distributed. At certain distances from the Sun we find 

asteroid "beltlets"; at other distances we find hardly any. The 

explanation-in both cases-is resonance with Jupiter. The 

Hilda group of asteroids, one of the beltlets, is in 2:3 reso

nance with Jupiter. That is, it is at just the right distance so 

that all of the Hilda asteroids circle the Sun three times for 

every two revolutions of Jupiter. The most noticeable gaps are 

at 2:1, 3:1, 4:1, 5:2, and 7:2 resonances. You may be worried 

that resonances are being used to explain both clumps and 
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gaps, The reason is that each resonance has its own idiosyn

cratic dynamics; some cause clustering, others do the oppo

site. It all depends on the precise numbers. 

Another function of mathematics is prediction. By under

standing the motion of heavenly bodies, astronomers could 

predict lunar and solar eclipses and the return of comets. 

They knew where to point their telescopes to find asteroids 

that had passed behind the Sun, out of observation?-l contact. 

Because the tides are controlled mainly by the position of the 

Sun and Moon relative to the Earth, they could predict tides 

many years ahead. (The chief complicating factor in making 

such predictions is not astronomy: it is the shape of the conti

nents and the profile of the ocean depths, which can delay or 

advance a high tide. However, these stay pretty much the 

same from one century to the next, so that once their effects 

have been understood it is a routine task to compensate for 

them.) In contrast, it is much harder to predict the weather. 

We know just as much about the mathematics of weather as 

we do about the mathematics of tides, but weather has an 

inherent unpredictability. Despite this, meteorologists can 

make effective short-term predictions of weather patterns

say, three or four days in advance. The unpredictability of the 

weather, however, has nothing at all to do with randomness

a topic we will take up in chapter 8, when we discuss the con

cept of chaos. 

The role of mathematics goes beyond mere prediction. 

Once you understand how a system works, you don't have to 

remain a passive observer. You can attempt to control the sys

tem, to make it do what you want. It pays not to be too ambi

tious: weather control, for example, is in its infancy-we can't 

make rain with any great success, even when there are rain

clouds about. Examples of control systems range from the 
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thermostat on a boiler, which keeps it at a fixed temperature, 

to the medieval practice of coppicing woodland. Without a 

sophisticated mathematical control system, the space shuttle 

would fly like the brick it is, for no human pilot can respond 

quickly enough to correct its inherent instabilities. The use of 

electronic pacemakers to help people with heart disease is 

another example of control. 

These examples bring us to the most down-to-earth aspect 

of mathematics: its practical applications-how mathematics 

earns its keep. Our world rests on mathematical foundations, 

and mathematics is unavoidably embedded in our global cul

ture. The only reason we don't always realize just how 

strongly our lives are affected by mathematics is that, for sen

sible reasons, it is kept as far as possible behind the scenes. 

When you go to the travel agent and book a vacation, you 

don't need to understand the intricate mathematical and 

physical theories that make it possible to design computers 

and telephone lines, the optimization routines that schedule 

as many flights as possible around any particular airport, or 

the signal-processing methods used to provide accurate radar 

images for the pilots. When you watch a television program, 

you don't need to understand the three-dimensional geometry 

used to produce special effects on the screen, the coding 

methods used to transmit TV signals by satellite, the mathe

matical methods used to solve the equations for the orbital 

motion of the satellite, the thousands of different applications 

of mathematics during every step of the manufacture of every 

component of the spacecraft that launched the satellite into 

position. When a farmer plants a new strain of potatoes, he 

does not need to know the statistical theories of genetics that 

identified which genes made that particular type of plant 

resistant to disease. 
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But somebody had to understand all these things in the 

past, otherwise airliners, television, spacecraft, and disease

resistant potatoes wouldn't have been invented. And some

body has to understand all these things now, too, otherwise 

they won't continue to function. And somebody has to be 

inventing new mathematics in the future, able to solve prob

lems that either have not arisen before or have hitherto 

proved intractable, otherwise our society will fall apart when 

change requires solutions to new problems or new solutions 

to old problems. If mathematics, including everything that 

rests on it, were somehow suddenly to be withdrawn from our 

world, human society would collapse in an instant. And if 

mathematics were to be frozen, so that it never went a single 

step farther, our civilization would start to go backward. 

We should not expect new mathematics to give an immedi

ate dollars-and-cents payoff. The transfer of a mathematical 

idea into something that can be made in a factory or used in a 

home generally takes time. Lots of time: a century is not 

unusual. In chapter 5, we will see how seventeenth-century 

interest in the vibrations of a violin string led, three hundred 

years later, to the discovery of radio waves and the invention of 

radio, radar, and television. It might have been done quicker, 

but not that much quicker. If you think-as many people in our 

increasingly managerial culture do-that the process of scien

tific discovery can be speeded up by focusing on the applica

tion as a goal and ignoring "curiosity-driven" research, then 

you are wrong. In fact that very phrase, "curiosity-driven 

research," was introduced fairly recently by unimaginative 

bureaucrats as a deliberate put-down. Their desire for tidy pro

jects offering guaranteed short-term profit is much too simple

minded, because goal-oriented research can deliver only pre

dictable results. You have to be able to see the goal in order to 
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aim at it. But anything you can see, your competitors can see, 

too. The pursuance of safe research will impoverish us all. The 

really important breakthroughs are always unpredictable. It is 

their very unpredictability that makes them important: they 

change our world in ways we didn't see coming. 

Moreover, goal-oriented research often runs up against a 

brick wall, and not only in mathematics. For example, it took 

approximately eighty years of intense engineering effort to 

develop the photocopying machine after the basic principle of 

xerography had been discovered by scientists. The first fax 

machine was invented over a century ago, but it didn't work 

fast enough or reliably enough. The principle of holography 

(three-dimensional pictures, see your credit card) was discov

ered over a century ago, but nobody then knew how to pro

duce the necessary beam of coherent light-light with all its 

waves in step. This kind of delay is not at all unusual in 

industry, let alone in more intellectual areas of research, and 

the impasse is usually broken only when an unexpected new 

idea arrives on the scene. 

There is nothing wrong with goal-oriented research as a 

way of achieving specific feasible goals. But the dreamers and 

the mavericks must be allowed some free rein, too. Our world 

is not static: new problems constantly arise, and old answers 

often stop working. Like Lewis Carroll's Red Queen, we must 

run very fast in order to stand still. 





CHAPTER J 

WHAT MATHEMATICS IS ABOUT 

When we hear the word "mathematics," the first thing that 

springs to mind is numbers. Numbers are the heart of mathe

matics, an all-pervading influence, the raw materials out of 

which a great deal of mathematics is forged. But numbers on 

their own form only a tiny part of mathematics. I said earlier 

that we live in an intensely mathematical world, but that 

whenever possible the mathematics is sensibly tucked under 

the rug to make our world "user-friendly." However, some 

mathematical ideas are so basic to our world that they cannot 

stay hidden, and numbers are an especially prominent exam

ple. Without the ability to count eggs and subtract change, for 

instance, we could not even buy food. And so we teach arith

metic. To everybody. Like reading and writing, its absence is 

a major handicap. And that creates the overwhelming impres

sion that mathematics is mostly a matter of numbers-which 

isn't really true. The numerical tricks we learn in arithmetic 

are only the tip of an iceberg. We can run our everyday lives 

without much more, but our culture cannot run our society by 

using such limited ingredients. Numbers are just one type of 

object that mathematicians think about. In this chapter, I will 

I. 
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try to show you some of the others and explain why they, too, 

are important. 

Inevitably my starting point has to be numbers. A large 

part of the early prehistory of mathematics can be summed up 

as the discovery, by various civilizations, of a wider and 

wider range of things that deserved to be called numbers. The 

simplest are the numbers we use for counting. In fact, count

ing began long before there were symbols like 1, 2, 3, because 

it is possible to count without using numbers at all-say, by 

counting on your fingers. You can work out that "I have two 

hands and a thumb of camels" by folding down fingers as 

your eye glances over the camels. You don't actually have to 

have the concept of the number "eleven" to keep track of 

whether anybody is stealing your camels. You just have to 

notice that next time you seem to have only two hands of 

camels-so a thumb of camels is missing. 

You can also record the count as scratches on pieces of 

wood or bone. Or you can make tokens to use as counters

clay disks with pictures of sheep on them for counting sheep, 

or disks with pictures of camels on them for counting camels. 

As the animals parade past you, you drop tokens into a bag

one token for each animal. The use of symbols for numbers 

probably developed about five thousand years ago, when such 

counters were wrapped in a clay envelope. It was a nuisance 

to break open the clay covering every time the accountants 

wanted to check the contents, and to make another one when 

they had finished. So people put special marks on the outside 

of the envelope summarizing what was inside. Then they real

ized that they didn't actually need any counters inside at all: 

they could just make the same marks on clay tablets. 

It's amazing how long it can take to see the obvious. But of 

course it's only obvious now. 



WHAT MATHEMATiCS is ABOUT II 

The next invention beyond counting numbers was frac

tions-the kind of number we now symbolize as 2/3 (two 

thirds) or 22/7 (twenty-two sevenths-or, equivalently, three 

and one-seventh). You can't count with fractions-although 

two-thirds of a camel might be edible, it's not countable-but 

you can do much more interesting things instead. In particu

lar, if three brothers inherit two camels between them, you 

can think of each as owning two-thirds of a camel-a conve

nient legal fiction, one with which we are so comfortable that 

we forget how curious it is if taken literally. 

Much later, between 400 and 1200 AD, the concept of zero 

was invented and accepted as denoting a number. If you think 

that the late acceptance of zero as a number is strange, bear in 

mind that for a long time "one" was not considered a number 

because it was thought that a number of things ought to be 

several of them. Many history books say that the key idea here 

was the invention of a symbol for "nothing." That may have 

been the key to making arithmetic practical; but for mathe

matics the important idea was the concept of a new kind of 

number, one that represented the concrete idea "nothing." 

Mathematics uses symbols, but it no more is those symbols 

than music is musical notation or language is strings of letters 

from an alphabet. Carl Friedrich Gauss, thought by many to be 

the greatest mathematician ever to have lived, once said (in 

Latin) that what matters in mathematics is "not notations, but 

notions." The pun "non notationes, sed notiones" worked in 

Latin, too. 

The next extension of the number concept was the inven

tion of negative numbers. Again, it makes little sense to think 

of minus two camels in a literal sense; but if you owe some

body two camels, the number you own is effectively dimin

ished by two. So a negative number can be thought of as rep-
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resenting a debt. There are many different ways to interpret 

these more esoteric kinds of number; for instance, a negative 

temperature (in degrees Celsius) is one that is colder than 

freezing, and an object with negative velocity is one that is 

moving backward, So the same abstract mathematical object 

may represent more than one aspect of nature. 

Fractions are all you need for most commercial transac

tions, but they're not enough for mathematics. For example, 

as the ancient Greeks discovered to their chagrin, the square 

root of two is not exactly representable as a fraction. That is, if 

you multiply any fraction by itself, you won't get two exactly. 

You can get very close-for example, the square of 17/12 is 

289/144, and if only it were 288/144 you would get two. But 

it isn't, and you don't-and whatever fraction you try, you 

never will. The square root of two, usually denoted .,,)2, is 

therefore said to be "irrational." The simplest way to enlarge 

the number system to include the irrationals is to use the so

called real numbers-a breathtakingly inappropriate name, 

inasmuch as they are represented by decimals that go on for

ever, like 3.14159 ... , where the dots indicate an infinite 

number of digits. How can things be real if you can't even 

write them down fully? But the name stuck, probably because 

real numbers formalize many of our natural visual intuitions 

about lengths and distances. 

The real numbers are one of the most audacious idealiza

tions made by the human mind, but they were used happily 

for centuries before anybody worried about the logic behind 

them. Paradoxically, people worried a great deal about the 

next enlargement of the number system, even though it was 

entirely harmless. That was the introduction of square roots 

for negative numbers, and it led to the "imaginary" and "com-
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plex" numbers. A professional mathematican should never 

leave home without them, but fortunately nothing in this 

book will require a knowledge of complex numbers, so I'm 

going to tuck them under the mathematical carpet and hope 

you don't notice. However, I should point out that it is easy to 

interpret an infinite decimal as a sequence of ever-finer 

approximations to some measurement-say, of a length or a 

weight-whereas a comfortable interpretation of the square 

root of minus one is more elusive. 

In current terminology, the whole numbers 0, 1, 2, 3, ... 

are known as the natural numbers. If negative whole numbers 

are included, we have the integers. Positive and negative frac

tions are called rational numbers. Real numbers are more gen

eral; complex numbers more general still. So here we have 

five number systems, each more inclusive than the previous: 

natural numbers, integers, rationals, real numbers, and com

plex numbers. In this book, the important number systems 

will be the integers and the reals. We'll need to talk about 

rational numbers every so often; and as I've just said, we can 

ignore the complex numbers altogether. But I hope you under

stand by now that the word "number" does not have any 

immutable god-given meaning. More than once the scope of 

that word was extended, a process that in principle might 

occur again at any time. 

However, mathematics is not just about numbers. We've 

already had a passing encounter with a different kind of 

object of mathematical thought, an operation; examples are 

addition, subtraction, multiplication, and division. In general, 

an operation is something you apply to two (sometimes more) 

mathematical objects to get a third object. I also alluded to a 

third type of mathematical object when I mentioned square 
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roots. If you start with a number and form its square root, you 

get another number. The term for such an "object" is function. 

You can think of a function as a mathematical rule that starts 

with a mathematical object-usually a number-and associ

ates to it another object in a specific manner. Functions are 

often defined using algebraic formulas, which are just short

hand ways to explain what the rule is, but they can be defined 

by any convenient method. Another term with the same 

meaning as "function" is transformation: the rule trans

forms the first object into the second. This term tends to be 

used when the rules are geometric, and in chapter 6 we will 

use transformations to capture the mathematical essence of 

symmetry. 

Operations and functions are very similar concepts. 

Indeed, on a suitable level of generality there is not much to 

distinguish them. Both of them are processes rather than 

things. And now is a good moment to open up Pandora's box 

and explain one of the most powerful general weapons in the 

mathematician's armory, which we might call the "thingifica

tion of processes." (There is a dictionary term, reification, but 

it sounds pretentious.) Mathematical "things" have no exis

tence in the real world: they are abstractions. But mathemati

cal processes are also abstractions, so processes are no less 

"things" than the "things" to which they are applied. The 

thingification of processes is commonplace. In fact, I can 

make out a very good case that the number "two" is not actu

ally a thing but a process-the process you carry out when 

you associate two camels or two sheep with the symbols "1, 

2" chanted in turn. A number is a process that has long ago 

been thingified so thoroughly that everybody thinks of it as a 

thing. It is just as feasible-though less familiar to most of 
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us-to think of an operation or a function as a thing. For 

example, we might talk of "square root" as if it were a thing

and I mean here not the square root of any particular number, 

but the function itself. In this image, the square-root function 

is a kind of sausage machine: you stuff a number in at one end 

and its square root pops out at the other. 

In chapter 6, we will treat motions of the plane or space as 

if they are things. I'm warning you now because you may find 

it disturbing when it happens. However, mathematicians 

aren't the only people who play the thingification game. The 

legal profession talks of "theft" as if it were a thing; it even 

knows what kind of thing it is-a crime. In phrases such as 

"two major evils in Western society are drugs and theft" we 

find one genuine thing and one thingified thing, both treated 

as if they were on exactly the same level. For theft is a 

process, one whereby my property is transferred without my 

agreement to somebody else, but drugs have a real physical 

existence. 

Computer scientists have a useful term for things that can 

be built up from numbers by thingifying processes: they call 

them data structures. Common examples in computer science 

are lists (sets of numbers written in sequence) and arrays 

(tables of numbers with several rows and columns). I've 

already said that a picture on a computer screen can be repre

sented as a list of pairs of numbers; that's a more complicated 

but entirely sensible data structure. You can imagine much 

more complicated possibilities-arrays that are tables of lists, 

not tables of numbers; lists of arrays; arrays of arrays; lists of 

lists of arrays of lists .... Mathematics builds its basic objects 

of thought in a similar manner. Back in the days when the 

logical foundations of mathematics were still being sorted 
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out, Bertrand Russell and Alfred North Whitehead wrote an 

enormous three-volume work, Principia Mathematica, which 

began with the simplest possible logical ingredient-the idea 

of a set, a collection of things. They then showed how to build 

up the rest of mathematics. Their main objective was to ana

lyze the logical structure of mathematics, but a major part of 

their effort went into devising appropriate data structures for 

the important objects of mathematical thought. 

The image of mathematics raised by this description of its 

basic objects is something like a tree, rooted in numbers and 

branching into ever more esoteric data structures as you pro

ceed from trunk to bough, bough to limb, limb to twig .... But 

this image lacks an essential ingredient. It fails to describe 

how mathematical concepts interact. Mathematics is not just 

a collection of isolated facts: it is more like a landscape; it has 

an inherent geography that its users and creators employ to 

navigate through what would otherwise be an impenetrable 

jungle. For instance, there is a metaphorical feeling of dis

tance. Near any particular mathematical fact we find other, 

related facts. For example, the fact that the circumference of a 

circle is 1t (pi) times its diameter is very close to the fact that 

the circumference of a circle is 21t times its radius. The con

nection between these two facts is immediate: the diameter is 

twice the radius. In contrast, unrelated ideas are more distant 

from each other; for example, the fact that there are exactly 

six different ways to arrange three objects in order is a long 

way away from facts about circles. There is also a metaphori

cal feeling of prominence. Soaring peaks pierce the sky

important ideas that can be used widely and seen from far 

away, such as Pythagoras's theorem about right triangles, or 

the basic techniques of calculus. At every turn, new vistas 
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arise-an unexpected river that must be crossed using step

ping stones, a vast, tranquil lake, an impassable crevasse. The 

user of mathematics walks only the well-trod parts of this 

mathematical territory. The creator of mathematics explores 

its unknown mysteries, maps them, and builds roads through 

them to make them more easily accessible to everybody else. 

The ingredient that knits this landscape together is proof 

Proof determines the route from one fact to another. To pro

fessional mathematicians, no statement is considered valid 

unless it is proved beyond any possibility of logical error. But 

there are limits to what can be proved, and how it can be 

proved. A great deal of work in philosophy and the founda

tions of mathematics has established that you can't prove 

everything, because you have to start somewhere; and even 

when you've decided where to start, some statements may be 

neither provable nor disprovable. I don't want to explore 

those issues here; instead, I want to take a pragmatic look at 

what proofs are and why they are needed. 

Textbooks of mathematical logic say that a proof is a 

sequence of statements, each of which either follows from 

previous statements in the sequence or from agreed axioms

unproved but explicitly stated assumptions that in effect 

define the area of mathematics being studied. This is about as 

informative as describing a novel as a sequence of sentences, 

each of which either sets up an agreed context or follows 

credibly from previous sentences. Both definitions miss the 

essential point: that both a proof and a novel must tell an 

interesting story. They do capture a secondary point, that the 

story must be convincing, and they also describe the overall 

format to be used, but a good story line is the most important 

feature of all. 



40 NATURE'S NUMBERS 

Very few textbooks say that. 

Most of us are irritated by a movie riddled with holes, 

however polished its technical production may be. I saw one 

recently in which an airport is taken over by guerrillas who 

shut down the electronic equipment used by the control 

tower and substitute their own. The airport authorities and 

the hero then spend half an hour or more of movie time-sev

eral hours of story time-agonizing about their inability to 

communicate with approaching aircraft, which are stacking 

up in the sky overhead and running out of fuel. It occurs to no 

one that there is a second, fully functioning airport no more 

than thirty miles away, nor do they think to telephone the 

nearest Air Force base. The story was brilliantly and expen

sively filmed-and silly. 

That didn't stop a lot of people from enjoying it: their criti

cal standards must have been lower than mine. But we all 

have limits to what we are prepared to accept as credible. If in 

an otherwise realistic film a child saved the day by picking up 

a house and carrying it away, most of us would lose interest. 

Similarly, a mathematical proof is a story about mathematics 

that works. It does not have to dot every j and cross every t; 

readers are expected to fill in routine steps for themselves

just as movie characters may suddenly appear in new sur

roundings without it being necessary to show how they got 

there. But the story must not have gaps, and it certainly must 

not have an unbelievable plot line. The rules are stringent: in 

mathematics, a single flaw is fatal. Moreover, a subtle flaw 

can be just as fatal as an obvious one. 

Let's take a look at an example. I have chosen a simple 

one, to avoid technical background; in consequence, the proof 

tells a simple and not very significant story. I stole it from a 
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colleague, who calls it the SHIP/DOCK Theorem. You proba

bly know the type of puzzle in which you are given one word 

(SHIP) and asked to turn it into another word (DOCK) by 

changing one letter at a time and getting a valid word at every 

stage. You might like to try to solve this one before reading 

on: if you do, you will probably understand the theorem, and 

its proof, more easily. 

Here's one solution: 

SHIP 

SLIP 

SLOP 

SLOT 

SOOT 

LOOT 

LOOK 

LOCK 

DOCK 

There are plenty of alternatives, and some involve fewer 

words. But if you play around with this problem, you will 

eventually notice that all solutions have one thing in com

mon: at least one of the intermediate words must contain two 

vowels. 

O.K., so prove it. 

I'm not willing to accept experimental evidence. I don't 

care if you have a hundred solutions and every single one of 

them includes a word with two vowels. You won't be happy 

with such evidence, either, because you will have a sneaky 

feeling that you may just have missed some really clever 

sequence that doesn't include such a word. On the other 

hand, you will probably also have a distinct feeling that some

how "it's obvious." I agree; but why is it obvious? 
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You have now entered a phase of existence in which most 

mathematicians spend most of their time: frustration. You 

know what you want to prove, you believe it, but you don't 

see a convincing story line for a proof. What this means is that 

you are lacking some key idea that will blow the whole prob

lem wide open. In a moment I'll give you a hint. Think about 

it for a few minutes, and you will probably experience a much 

more satisfying phase of the mathematician's existence: 

illumination. 

Here's the hint. Every valid word in English must contain 

a vowel. 

It's a very simple hint. First, convince yourself that it's true. 

(A dictionary search is acceptable, provided it's a big dictio

nary.) Then consider its implications .... 

O.K., either you got it or you've given up. Whichever of 

these you did, all professional mathematicians have done the 

same on a lot of their problems. Here's the trick. You have to 

concentrate on what happens to the vowels. Vowels are the 

peaks in the SHIP/DOCK landscape, the landmarks between 

which the paths of proof wind. 

In the initial word SHIP there is only one vowel, in the 

third position. In the final word DOCK there is also only one 

vowel, but in the second position. How does the vowel 

change position? There are three possibilities. It may hop 

from one location to the other; it may disappear altogether 

and reappear later on; or an extra vowel or vowels may be cre

ated and subsequently eliminated. 

The third possibility leads pretty directly to the theorem. 

Since only one letter at a time changes, at some stage the 

word must change from having one vowel to having two. It 

can't leap from having one vowel to having three, for exam-
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pIe. But what about the other possibilities? The hint that I 

mentioned earlier tells us that the single vowel in SHIP can

not disappear altogether. That leaves only the first possibility: 

that there is always one vowel, but it hops from position 3 to 

position 2. However, that can't be done by changing only one 

letter! You have to move, in one step, from a vowel at position 

3 and a consonant at position 2 to a consonant at position 3 

and a vowel at position 2. That implies that two letters must 

change, which is illegal. Q.E.D., as Euclid used to say. 

A mathematician would write the proof out in a much 

more formal style, something like the textbook model, but the 

important thing is to tell a convincing story. Like any good 

story, it has a beginning and an end, and a story line that gets 

you from one to the other without any logical holes appear

ing. Even though this is a very simple example, and it isn't 

standard mathematics at all, it illustrates the essentials: in 

particular, the dramatic difference between an argument that 

is genuinely convincing and a hand-waving argument that 

sounds plausible but doesn't really gel. I hope it also put you 

through some of the emotional experiences of the creative 

mathematician: frustration at the intractability of what ought 

to be an easy question, elation when light dawned, suspicion 

as you checked whether there were any holes in the argu

ment, aesthetic satisfaction when you decided the idea really 

was O.K. and realized how neatly it cut through all the appar

ent complications. Creative mathematics is just like this-but 

with more serious subject matter. 

Proofs must be convincing to be accepted by mathemati

cians. There have been many cases where extensive numeri

cal evidence suggested a completely wrong answer. One noto

rious example concerns prime numbers-numbers that have 
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no divisors except themselves and 1. The sequence of primes 

begins 2, 3, 5, 7, 11, 13, 17, 19 and goes on forever. Apart from 

2, all primes are odd; and the odd primes fall into two classes: 

those that are one less than a multiple of four (such as 3, 7, 11, 

19) and those that are one more than a multiple of four (such 

as 5, 13, 17). If you run along the sequence of primes and 

count how many of them fall into each class, you will observe 

that there always seem to be more primes in the "one less" 

class than in the "one more" class. For example, in the list of 

the seven pertinent primes above, there are four primes in the 

first class but only three in the second. This pattern persists 

for numbers up to at least a trillion, and it seems entirely rea

sonable to conjecture that it is always true. 

However, it isn't. 

By indirect methods, number theorists have shown that 

when the primes get sufficiently big, the pattern changes and 

the "one more than a multiple of four" class goes into the 

lead. The first proof of this fact worked only when the num

bers got bigger than 10'10'10'10'46, where to avoid giving the 

printer kittens I've used the ' sign to indicate forming a 

power. This number is utterly gigantic. Written out in full, it 

would go 10000 ... 000, with a very large number of Os. If all 

the matter in the universe were turned into paper, and a zero 

could be inscribed on every electron, there wouldn't be 

enough of them to hold even a tiny fraction of the necessary 

zeros. 

No amount of experimental evidence can account for the 

possibility of exceptions so rare that you need numbers that 

big to locate them. Unfortunately, even rare exceptions matter 

in mathematics. In ordinary life, we seldom worry about 

things that might occur on one occasion out of a trillion. Do 



WHAT MATHEMATiCS is ABOUT 45 

you worry about being hit by a meteorite? The odds are about 

one in a trillion. But mathematics piles logical deductions on 

top of each other, and if any step is wrong the whole edifice 

may tumble. If you have stated as a fact that all numbers 

behave in some manner, and there is just one that does not, 

then you are wrong, and everything you have built on the 

basis of that incorrect fact is thrown into doubt. 

Even the very best mathematicians have on occasion 

claimed to have proved something that later turned out not to 

be so-their proof had a subtle gap, or there was a simple 

error in a calculation, or they inadvertently assumed some

thing that was not as rock-solid as they had imagined. So, 

over the centuries, mathematicians have learned to be 

extremely critical of proofs. Proofs knit the fabric of mathe

matics together, and if a single thread is weak, the entire fab

ric may unravel. 





CHAPTER 4 

THE CONSTANTS OF CHANGE 

For a good many centuries, human thought about nature has 

swung between two opposing points of view. According to 

one view, the universe obeys fixed, immutable laws, and 

everything exists in a well-defined objective reality. The 

opposing view is that there is no such thing as objective real

ity; that all is flux, all is change. As the Greek philosopher 

Heraclitus put it, "You can't step into the same river twice." 

The rise of science has largely been governed by the first 

viewpoint. But there are increasing signs that the prevailing 

cultural background is starting to switch to the second-ways 

of thinking as diverse as postmodernism, cyberpunk, and 

chaos theory all blur the alleged objectiveness of reality and 

reopen the ageless debate about rigid laws and flexible 

change. 

What we really need to do is get out of this futile game 

altogether. We need to find a way to step back from these 

opposing worldviews-not so much to seek a synthesis as to 

see them both as two shadows of some higher order of real

ity-shadows that are different only because the higher order 

is being seen from two different directions. But does such a 

higher order exist, and if so, is it accessible? To many-espe

cially scientists-Isaac Newton represents the triumph of 

47 
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rationality over mysticism. The famous economist John May

nard Keynes, in his essay Newton, the Man, saw things differ

ently: 

In the eighteenth century and since, Newton came to be thought 

of as the first and greatest of the modern age of scientists, a ratio

nalist, one who taught us to think on the lines of cold and 

untinctured reason. I do not see him in this light. I do not think 

that anyone who has pored over the contents of that box which 

he packed up when he finally left Cambridge in 1696 and 

which, though partly dispersed, have come down to us, can see 

him like that. Newton was not the first of the age of reason. He 

was the last of the magicians, the last of the Babylonians and 

Sumerians, the last great mind which looked out on the visible 

and intellectual world with the same eyes as those who began to 

build our intellectual inheritance rather less than 10,000 years 

ago. Isaac Newton, a posthumous child born with no father on 

Christmas Day, 1642, was the last wonder-child to whom the 

Magi could do sincere and appropriate homage. 

Keynes was thinking of Newton's personality, and of his 

interests in alchemy and religion as well as in mathematics 

and physics. But in Newton's mathematics we also find the 

first significant step toward a worldview that transcends and 

unites both rigid law and flexible flux. The universe may 

appear to be a storm-tossed ocean of change, but Newton

and before him Galileo and Kepler, the giants upon whose 

shoulders he stood-realized that change obeys rules. Not 

only can law and flux coexist, but law generates flux. 

Today's emerging sciences of chaos and complexity sup

ply the missing converse: flux generates law. But that is 

another story, reserved for the final chapter. 
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Prior to Newton, mathematics had offered an essentially 

static model of nature. There are a few exceptions, the most 

obvious being Ptolemy'S theory of planetary motion, which 

reproduced the observed changes very accurately using a sys

tem of circles revolving about centers that themselves were 

attached to revolving circles-wheels within wheels within 

wheels. But at that time the perceived task of mathematics 

was to discover the catalogue of "ideal forms" employed by 

nature. The circle was held to be the most perfect shape possi

ble, on the basis of the democratic observation that every 

point on the circumference of a circle lies at the same dis

tance from its center. Nature, the creation of higher beings, is 

by definition perfect, and ideal forms are mathematical per

fection, so of course the two go together. And perfection was 

thought to be unblemished by change. 

Kepler challenged that view by finding ellipses in place of 

complex systems of circles. Newton threw it out altogether, 

replacing forms by the laws that produce them. 

Although its ramifications are immense, Newton's approach 

to motion is a simple one. It can be illustrated using the 

motion of a projectile, such as a cannonball fired from a gun 

at an angle. Galileo discovered experimentally that the path of 

such a projectile is a parabola, a curve known to the ancient 

Greeks and related to the ellipse. In this case, it forms an 

inverted V-shape. The parabolic path can be most easily 

understood by decomposing the projectile's motion into two 

independent components: motion in a horizontal direction 

and motion in a vertical direction. By thinking about these 

two types of motion separately, and putting them back 

together only when each has been understood in its own 

right, we can see why the path should be a parabola. 
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The cannonball's motion in the horizontal direction, paral

lel to the ground, is very simple: it takes place at a constant 

speed. Its motion in the vertical direction is more interesting. 

It starts moving upward quite rapidly, then it slows down, 

until for a split second it appears to hang stationary in the air; 

then it begins to drop, slowly at first but with rapidly increas

ing velocity. 

Newton's insight was that although the position of the 

cannonball changes in quite a complex way, its velocity 

changes in a much simpler way, and its acceleration varies in 

a very simple manner indeed. Figure 2 summarizes the rela

tionship between these three functions, in the following 

example. 

Suppose for the sake of illustration that the initial upward 

velocity is fifty meters per second (50 m/sec). Then the height 

of the cannonball above ground, at one-second intervals, is: 

0,45,80,105,120,125,120,105,80,45,0. 

You can see from these numbers that the ball goes up, levels 

off near the top, and then goes down again. But the general 

pattern is not entirely obvious. The difficulty was com

pounded in Galileo's time-and, indeed, in Newton's

because it was hard to measure these numbers directly. In 

actual fact, Galileo rolled a ball up a gentle slope to slow the 

whole process down. The biggest problem was to measure 

time accurately: the historian Stillman Drake has suggested 

that perhaps Galileo hummed tunes to himself and subdi

vided the basic beat in his head, as a musician does. 

The pattern of distances is a puzzle, but the pattern of 

velocities is much clearer. The ball starts with an upward 

velocity of 50 m/sec. One second later, the velocity has 
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Calculus in a nutshell. Three mathematical patterns determined by a 
cannonball: height, velocity, and acceleration. The pattern of 
heights, which is what we naturally observe, is complicated. Newton 
realized that the pattern of velocities is simpler, while the pattern of 
accelerations is simpler still. The two basic operations of calculus, 
differentiation and integration, let us pass from any of these patterns 
to any other. So we can work with the simplest, acceleration, and 
deduce the one we really want-height. 
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decreased to (roughly) 40 m/sec; a second after that, it is 30 

m/sec; then 20 m/sec, 10 m/sec, then a m/sec (stationary). A 

second after that, the velocity is 10 m/sec downward. Using 

negative numbers, we can think of this as an upward velocity 

of -10 m/sec. In successive seconds, the pattern continues: -20 

m/sec, -30 m/sec, -40 m/sec, -50 m/sec. At this point, the can

nonball hits the ground. So the sequence of velocities, mea

sured at one-second intervals, is: 

50,40, 30, 20, 10, 0, -10, -20, -30, -40, -50. 

Now there is a pattern that can hardly be missed; but let's go 

one step further by looking at accelerations. The correspond

ing sequence for the acceleration of the cannonball, again 

using negative numbers to indicate downward motion, is 

-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10. 

I think you will agree that the pattern here is extremely sim

ple. The ball undergoes a constant downward acceleration of 

10 m/sec2 • (The true figure is about 9.81 m/sec2 , depending on 

whereabouts on the Earth you perform the experiment. But 10 

is easier to think about.) 

How can we explain this constant that is hiding among the 

dynamic variables? When all else is flux, why is the accelera

tion fixed? One attractive explanation has two elements. The 

first is that the Earth must be pulling the ball downward; that 

is, there is a gravitational force that acts on the ball. It is rea

sonable to expect this force to remain the same at different 

heights above the ground. Indeed, we feel weight because 

gravity pulls our bodies downward, and we still weigh the 

same if we stand at the top of a tall building. Of course, this 

appeal to everyday observation does not tell us what happens 



THE CONSTANTS OF CHANGE 51 

if the distance becomes sufficiently large-say the distance 

that separates the Moon from the Earth. That's a different 

story, to which we shall return shortly. 

The second element of the explanation is the real break

through. We have a body moving under a constant downward 

force, and we observe that it undergoes a constant downward 

acceleration. Suppose, for the sake of argument, that the pull 

of gravity was a lot stronger: then we would expect the down

ward acceleration to be a lot stronger, too. Without going to a 

heavy planet, such as Jupiter, we can't test this idea, but it 

looks reasonable; and it's equally reasonable to suppose that 

on Jupiter the downward acceleration would again be con

stant-but a different constant from what it is here. The sim

plest theory consistent with this mixture of real experiments 

and thought experiments is that when a force acts on a body, 

the body experiences an acceleration that is proportional to 

that force. And this is the essence of Newton's law of motion. 

The only missing ingredients are the assumption that this is 

always true, for all bodies and for all forces, whether or not 

the forces remain constant; and the identification of the con

stant of proportionality as being related to the mass of the 

body. To be precise, Newton's law of motion states that 

mass x acceleration = force. 

That's it. Its great virtue is that it is valid for any system of 

masses and forces, including masses and forces that change 

over time. We could not have anticipated this universal 

applicability from the argument that led us to the law; but it 

turns out to be so. 

Newton stated three laws of motion, but the modern 

approach views them as three aspects of a single mathemati-
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cal equation. So I will use the phrase "Newton's law of 

motion" to refer to the whole package. 

The mountaineer's natural urge when confronted with a 

mountain is to climb it; the mathematician's natural urge 

when confronted with an equation is to solve it. But how? 

Given a body's mass and the forces acting on it, we can easily 

solve this equation to get the acceleration. But this is the 

answer to the wrong question. Knowing that the acceleration 

of a cannonball is always -10 m/sec2 doesn't tell us anything 

obvious about the shape of its trajectory. This is where the 

branch of mathematics known as calculus comes in; indeed it 

is why Newton (and Leibniz) invented it. Calculus provides a 

technique, which nowadays is called integration, that allows 

us to move from knowledge of acceleration at any instant to 

knowledge of velocity at any instant. By repeating the same 

trick, we can then obtain knowledge of position at any 

instant. And that is the answer to the right question. 

As I said earlier, velocity is rate of change of position, and 

acceleration is rate of change of velocity. Calculus is a mathe

matical scheme invented to handle questions about rates of 

change. In particular, it provides a technique for finding rates 

of change-a technique known as differentiation. Integration 

"undoes" the effect of differentiation; and integrating twice 

undoes the effect of differentiating twice. Like the twin faces 

of the Roman god Janus, these twin techniques of calculus 

point in opposite directions. Between them, they tell you that 

if you know anyone of the functions-position, velocity, or 

acceleration-at every instant, then you can work out the 

other two. 

Newton's law of motion teaches an important lesson: 

namely, that the route from nature's laws to nature's behavior 
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need not be direct and obvious. Between the behavior we 

observe and the laws that produce it is a crevasse, which the 

human mind can bridge only by mathematical calculations. 

This is not to suggest that nature is mathematics-that (as the 

physicist Paul Dirac put it) "God is a mathematician." Maybe 

nature's patterns and regularities have other origins; but, at 

the very least, mathematics is an extremely effective way for 

human beings to come to grips with those patterns. 

All of the laws of physics that were discovered by pursu

ing Isaac Newton's basic insight-that change in nature can be 

described by mathematical processes, just as form in nature 

can be described by mathematical things-have a similar 

character. The laws are formulated as equations that relate not 

the physical quantities of primary interest but the rates at 

which those quantities change with time, or the rates at which 

those rates change with time. For example the "heat equa

tion," which determines how heat flows through a conducting 

body, is all about the rate of change of the body's temperature; 

and the "wave equation," which governs the motion of waves 

in water, air, or other materials, is about the rate of change of 

the rate of change of the height of the wave. The physical laws 

for light, sound, electricity, magnetism, the elastic bending of 

materials, the flow of fluids, and the course of a chemical 

reaction, are all equations for various rates of change. 

Because a rate of change is about the difference between 

some quantity now and its value an instant into the future, 

equations of this kind are called differential equations. The 

term "differentiation" has the same origin. Ever since New

ton, the strategy of mathematical physics has been to describe 

the universe in terms of differential equations, and then solve 

them. 
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However, as we have pursued this strategy into more 

sophisticated realms, the meaning of the word "solve" has 

undergone a series of major changes. Originally it implied 

finding a precise mathematical formula that would describe 

what a system does at any instant of time. Newton's discovery 

of another important natural pattern, the law of gravitation, 

rested upon a solution of this kind. He began with Kepler's 

discovery that planets move in ellipses, together with two 

other mathematical regularities that were also noted by 

Kepler. Newton asked what kind of force, acting on a planet, 

would be needed to produce the pattern that Kepler had 

found. In effect, Newton was trying to work backward from 

behavior to laws, using a process of induction rather than 

deduction. And he discovered a very beautiful result. The 

necessary force should always point in the direction of the 

Sun; and it should decrease with the distance from the planet 

to the Sun. Moreover, this decrease should obey a simple 

mathematical law, the inverse-square law. This means that 

the force acting on a planet at, say, twice the distance is 

reduced to one-quarter, the force acting on a planet at three 

times the distance is reduced to one-ninth, and so on. From 

this discovery-which was so beautiful that it surely con

cealed a deep truth about the world-it was a short step to the 

realization that it must be the Sun that causes the force in the 

first place. The Sun attracts the planet, but the attraction 

becomes weaker if the planet is farther away. It was a very 

appealing idea, and Newton took a giant intellectual leap: he 

assumed that the same kind of attractive force must exist 

between any two bodies whatsoever, anywhere in the uni-

verse. 

And now, having "induced" the law for the force, Newton 

could bring the argument full circle by deducing the geometry 
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of planetary motion. He solved the equations given by his 

laws of motion and gravity for a system of two mutually 

attracting bodies that obeyed his inverse-square law; in those 

days, "solved" meant finding a mathematical formula for their 

motion. The formula implied that they must move in ellipses 

about their common center of mass. As Mars moves around 

the Sun in a giant ellipse, the Sun moves in an ellipse so tiny 

that its motion goes undetected. Indeed, the Sun is so massive 

compared to Mars that the mutual center of mass lies beneath 

the Sun's surface, which explains why Kepler thought that 

Mars moved in an ellipse around the stationary Sun. 

However, when Newton and his successors tried to build 

on this success by solving the equations for a system of three 

or more bodies-such as Moon/Earth/Sun, or the entire Solar 

System-they ran into technical trouble; and they could get 

out of trouble only by changing the meaning of the word 

"solve." They failed to find any formulas that would solve the 

equations exactly, so they gave up looking for them. Instead, 

they tried to find ways to calculate approximate numbers. For 

example, around 1860 the French astronomer Charles-Eugene 

Delaunay filled an entire book with a single approximation to 

the motion of the Moon, as influenced by the gravitational 

attractions of the Earth and the Sun. It was an extremely accu

rate approximation-which is why it filled a book-and it 

took him twenty years to work it out. When it was subse

quently checked, in 1970, using a symbolic-algebra computer 

program, the calculation took a mere twenty hours: only three 

mistakes were found in Delaunay's work, none serious. 

The motion of the Moon/Earth/Sun system is said to be a 

three-body problem-for evident reasons. It is so unlike the 

nice, tidy two-body problem Newton solved that it might as 

well have been invented on another planet in another galaxy, 
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or in another universe. The three-body problem asks for a 

solution for the equations that describe the motion of three 

masses under inverse-square-Iaw gravity. Mathematicians 

tried to find such a solution for centuries but met with aston

ishingly little success beyond approximations, such as De

launay's, which worked only for particular cases, like 

Moon/Earth/Sun. Even the so-called restricted three-body 

problem, in which one body has a mass so small that it can be 

considered to exert no force at all upon the other two, proved 

utterly intractable. It was the first serious hint that knowing 

the laws might not be enough to understand how a system 

behaves; that the crevasse between laws and behavior might 

not always be bridgeable. 

Despite intensive effort, more than three centuries after 

Newton we still do not have a complete answer to the three

body problem. However, we finally know why the problem 

has been so hard to crack. The two-body problem is "inte

grable"-the laws of conservation of energy and momentum 

restrict solutions so much that they are forced to take a simple 

mathematical form. In 1994, Zhihong Xia, ofthe Georgia Insti

tute of Technology, proved what mathematicians had long 

suspected: that a system of three bodies is not integrable. 

Indeed, he did far more, by showing that such a system can 

exhibit a strange phenomenon known as Arnold diffusion, 

first discovered by Vladimir Arnold, of Moscow State Univer

sity, in 1964. Arnold diffusion produces an extremely slow, 

"random" drift in the relative orbital positions. This drift is 

not truly random: it is an example of the type of behavior now 

known as chaos-which can be described as apparently ran

dom behavior with purely deterministic causes. 

Notice that this approach again changes the meaning of 

"solve." First that word meant "find a formula." Then its 
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meaning changed to "find approximate numbers." Finally, it 

has in effect become "tell me what the solutions look like." In 

place of quantitative answers, we seek qualitative ones. In a 

sense, what is happening looks like a retreat: if it is too hard 

to find a formula, then try an approximation; if approxima

tions aren't available, try a qualitative description. But it is 

wrong to see this development as a retreat, for what this 

change of meaning has taught us is that for questions like the 

three-body problem, no formulas can exist. We can prove that 

there are qualitative aspects to the solution that a formula 

cannot capture. The search for a formula in such questions 

was a hunt for a mare's nest. 

Why did people want a formula in the first place? Because 

in the early days of dynamics, that was the only way to work 

out what kind of motion would occur. Later, the same infor

mation could be deduced from approximations. Nowadays, it 

can be obtained from theories that deal directly and precisely 

with the main qualitative aspects of the motion. As we will 

see in the next few chapters, this move toward an explicitly 

qualitative theory is not a retreat but a major advance. For the 

first time, we are starting to understand nature's patterns in 

their own terms. 





CHAPTER S 

FROM VIOLINS TO VIDEOS 

It has become conventional, as I have noted, to separate math

ematics into two distinct subdisciplines labeled pure mathe

matics and applied mathematics. This is a separation that 

would have baffled the great mathematicians of classical 

times. Carl Friedrich Gauss, for example, was happiest in the 

ivory tower of number theory, where he delighted in abstract 

numerical patterns simply because they were beautiful and 

challenging. He called number theory "the queen of mathe

matics," and the poetic idea that queens are delicate beauties 

who do not sully their hands with anything useful was not far 

from his mind. However, he also calculated the orbit of Ceres, 

the first asteroid to be discovered. Soon after its discovery, 

Ceres passed behind the Sun, as seen from Earth, and could 

no longer be observed. Unless its orbit could be calculated 

accurately, astronomers would not be able to find it when it 

again became visible, months later. But the number of obser

vations of the asteroid was so small that the standard methods 

for calculating orbits could not provide the required level of 

accuracy. So Gauss made several major innovations, some of 

which remain in use to this day. It was a virtuoso perfor

mance, and it made his public reputation. Nor was that his 

6. 
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only practical application of his subject: among other things, 

he was also responsible for major developments in surveying, 

telegraphy, and the understanding of magnetism. 

In Gauss's time, it was possible for one person to have a 

fairly good grasp of the whole of mathematics. But because all 

of the classical branches of science have grown so vast that no 

single mind can likely encompass even one of them, we now 

live in an age of specialists. The organizational aspects of 

mathematics function more tidily if people specialize either 

in the theoretical areas of the subject or its practical ones. 

Because most people feel happier working in one or the other 

of these two styles, individual preferences tend to reinforce 

this distinction. Unfortunately, it is then very tempting for the 

outside world to assume that the only useful part of mathe

matics is applied mathematics; after all, that is what the name 

seems to imply. This assumption is correct when it comes to 

established mathematical techniques: anything really useful 

inevitably ends up being considered "applied," no matter 

what its origins may have been. But it gives a very distorted 

view of the origins of new mathematics of practical impor

tance. Good ideas are rare, but they come at least as often 

from imaginative dreams about the internal structure of math

ematics as they do from attempts to solve a specific, practical 

problem. This chapter deals with a case history of just such a 

development, whose most powerful application is televi

sion-an invention that arguably has changed our world more 

than any other. It is a story in which the pure and applied 

aspects of mathematics combine to yield something far more 

powerful and compelling than either could have produced 

alone. And it begins at the start of the sixteenth century, with 

the problem of the vibrating violin string. Although this may 
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sound like a practical question, it was studied mainly as an 

exercise in the solution of differential equations; the work was 

not aimed at improving the quality of musical instruments. 

Imagine an idealized violin string, stretched in a straight 

line between two fixed supports. If you pluck the string, 

pulling it away from the straight-line position and then letting 

go, what happens? As you pull it sideways, its elastic tension 

increases, which produces a force that pulls the string back 

toward its original position. When you let go, it begins to 

accelerate under the action of this force, obeying Newton's 

law of motion. However, when it returns to its initial position 

it is moving rapidly, because it has been accelerating the 

whole time-so it overshoots the straight line and keeps mov

ing. Now the tension pulls in the opposite direction, slowing 

it down until it comes to a halt. Then the whole story starts 

over. If there is no friction, the string will vibrate from side to 

side forever. 

That's a plausible verbal description; one of the tasks for a 

mathematical theory is to see whether this scenario really 

holds good, and if so, to work out the details, such as the 

shape that the string describes at any instant. It's a complex 

problem, because the same string can vibrate in many different 

ways, depending upon how it is plucked. The ancient Greeks 

knew this, because their experiments showed that a vibrating 

string can produce many different musical tones. Later genera

tions realized that the pitch of the tone is determined by the 

frequency of vibration-the rate at which the string moves to 

and fro-so the Greek discovery tells us that the same string 

can vibrate at many different frequencies. Each frequency cor

responds to a different configuration of the moving string, and 

the same string can take up many different shapes. 
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Strings vibrate much too fast for the naked eye to see any 

one instantaneous shape, but the Greeks found important evi

dence for the idea that a string can vibrate at many different 

frequencies. They showed that the pitch depends on the posi

tions of the nodes-places along the length of the string 

which remain stationary. You can test this on a violin, banjo, 

or guitar. When the string is vibrating in its "fundamental" 

frequency-that is, with the lowest possible pitch-only the 

end points are at rest. If you place a finger against the center 

of the string, creating a node, and then pluck the string, it pro

duces a note one octave higher. If you place your finger one

third of the way along the string, you actually create two 

nodes (the other being two-thirds of the way along, and this 

produces a yet higher note. The more nodes, the higher the 

frequency. In general, the number of nodes is an integer, and 

the nodes are equally spaced. 

The corresponding vibrations are standing waves, meaning 

waves that move up and down but do not travel along the 

string. The size of the up-and-down movement is known as 

the amplitude of the wave, and this determines the tone's 

loudness. The waves are sinusoidal-shaped like a sine 

curve, a repetive wavy line of rather elegant shape that arises 

in trigonometry. 

In 1714, the English mathematician Brook Taylor pub

lished the fundamental vibrational frequency of a violin 

string in terms of its length, tension, and density. In 1746, the 

Frenchman Jean Le Rond d'Alembert showed that many 

vibrations of a violin string are not sinusoidal standing waves. 

In fact, he proved that the instantaneous shape of the wave 

can be anything you like. In 1748, in response to d'Alembert's 

work, the prolific Swiss mathematician Leonhard Euler 
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worked out the "wave equation" for a string. In the spirit of 

Isaac Newton, this is a differential equation that governs the 

rate of change of the shape of the string. In fact it is a "partial 

differential equation," meaning that it involves not only rates 

of change relative to time but also rates of change relative to 

space-the direction along the string. It expresses in mathe

matical language the idea that the acceleration of each tiny 

segment of the string is proportional to the tensile forces act

ing upon that segment; so it is a consequence of Newton's law 

of motion. 

Not only did Euler formulate the wave equation: he solved 

it. His solution can be described in words. First, deform the 

string into any shape you care to choose-a parabola, say, or a 

triangle, or a wiggly and irregular curve of your own devising. 

Then imagine that shape propagating along the string toward 

the right. Call this a rightward-traveling wave. Then turn the 

chosen shape upside down, and imagine it propagating the 

other way, to create a leftward-traveling wave. Finally, super

pose these two waveforms. This process leads to all possible 

solutions of the wave equation in which the ends of the string 

remain fixed. 

Almost immediately, Euler got into an argument with 

Daniel Bernoulli, whose family originally hailed from 

Antwerp but had moved to Germany and then Switzerland to 

escape religious persecution. Bernoulli also solved the wave 

equation, but by a totally different method. According to 

Bernoulli, the most general solution can be represented as a 

superposition of infinitely many sinusoidal standing waves. 

This apparent disagreement began a century-long controversy, 

eventually resolved by declaring both Euler and Bernoulli 

right. The reason that they are both right is that every periodi-
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cally varying shape can be represented as a superposition of an 

infinite number of sine curves. Euler thought that his approach 

led to a greater variety of shapes, because he didn't recognize 

their periodicity. However, the mathematical analysis works 

with an infinitely long curve. Because the only part of the 

curve that matters is the part between the two endpoints, it 

can be repeated periodically along a very long string without 

any essential change. So Euler's worries were unfounded. 

The upshot of all this work, then, is that the sinusoidal 

waves are the basic vibrational components. The totality of 

vibrations that can occur is given by forming all possible 

sums of finitely or infinitely many sinusoidal waves of all 

possible amplitudes. As Daniel Bernoulli had maintained all 

along, "all new curves given by d' Alembert and Euler are only 

combinations of the Taylor vibrations." 

With the resolution of this controversy, the vibrations of a 

violin string ceased to be a mystery, and the mathematicians 

went hunting for bigger game. A violin string is a curve-a 

one-dimensional object-but objects with more dimensions 

can also vibrate. The most obvious musical instrument that 

employs a two-dimensional vibration is the drum, for a drum

skin is a surface, not a straight line. So mathematicians turned 

their attention to drums, starting with Euler in 1759. Again he 

derived a wave equation, this one describing how the displace

ment of the drums kin in the vertical direction varies over time. 

Its physical interpretation is that the acceleration of a small 

piece of the drums kin is proportional to the average tension 

exerted on it by all nearby parts of the drumskin: symbolically, 

it looks much like the one-dimensional wave equation; but 

now there are spatial (second-order) rates of change in two 

independent directions, as well as the temporal rate of change. 
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Violin strings have fixed ends. This "boundary condition" 

has an important effect: it determines which solutions to the 

wave equation are physically meaningful for a violin string. In 

this whole subject, boundaries are absolutely crucial. Drums 

differ from violin strings not only in their dimensionality but 

in having a much more interesting boundary: the boundary of 

a drum is a closed curve, or circle. However, like the bound

ary of a string, the boundary of the drum is fixed: the rest of 

the drumskin can move, but its rim is firmly strapped down. 

This boundary condition restricts the possible motions of the 

drumskin. The isolated endpoints of a violin string are not as 

interesting and varied a boundary condition as a closed curve 

is; the true role of the boundary becomes apparent only in two 

or more dimensions. 

As their understanding of the wave equation grew, the 

mathematicians of the eighteenth century learned to solve the 

wave equation for the motion of drums of various shapes. But 

now the wave equation began to move out of the musical 

domain to establish itself as an absolutely central feature of 

mathematical physics. It is probably the single most impor

tant mathematical formula ever devised-Einstein's famous 

relation between mass and energy notwithstanding. What 

happened was a dramatic instance of how mathematics can 

lay bare the hidden unity of nature. The same equation began 

to show up everywhere. It showed up in fluid dynamics, 

where it described the formation and motion of water waves. 

It showed up in the theory of sound, where it described the 

transmission of sound waves-vibrations of the air, in which 

its molecules become alternately compressed and separated. 

And then it showed up in the theories of electricity and mag

netism, and changed human culture forever. 
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Electricity and magnetism have a long, complicated his

tory, far more complex than that of the wave equation, involv

ing accidental discoveries and key experiments as well as 

mathematical and physical theories, Their story begins with 

William Gilbert, physician to Elizabeth I, who described the 

Earth as a huge magnet and observed that electrically charged 

bodies can attract or repel each other. It continues with such 

people as Benjamin Franklin, who in 1752 proved that light

ning is a form of electricity by flying a kite in a thunderstorm; 

Luigi Galvani, who noticed that electrical sparks caused a 

dead frog's leg muscles to contract; and Alessandro Volta, 

who invented the first battery. Throughout much of this early 

development, electricity and magnetism were seen as two 

quite distinct natural phenomena. The person who set their 

unification in train was the English physicist and chemist 

Michael Faraday. Faraday was employed at the Royal Institu

tion in London, and one of his jobs was to devise a weekly 

experiment to entertain its scientifically-minded members. 

This constant need for new ideas turned Faraday into one of 

the greatest experimental physicists of all time. He was espe

cially fascinated by electricity and magnetism, because he 

knew that an electric current could create a magnetic force. 

He spent ten years trying to prove that, conversely, a magnet 

could produce an electric current, and in 1831 he succeeded. 

He had shown that magnetism and electricity were two differ

ent aspects of the same thing-electromagnetism. It is said 

that King William IV asked Faraday what use his scientific 

parlor tricks were, and received the reply "I do not know, 

Your Majesty, but I do know that one day you will tax them." 

In fact, practical uses soon followed, notably the electric 

motor (electricity creates magnetism creates motion) and the 
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electrical generator (motion creates magnetism creates elec

tricity). But Faraday also advanced the theory of electromag

netism. Not being a mathematician, he cast his ideas in physi

cal imagery, of which the most important was the idea of a 

line of force. If you place a magnet under a sheet of paper and 

sprinkle iron filings on top, they will line up along well

defined curves. Faraday's interpretation of these curves was 

that the magnetic force did not act "at a distance" without any 

intervening medium; instead, it propagated through space 

along curved lines. The same went for electrical force. 

Faraday was no mathematician, but his intellectual suc

cessor James Clerk Maxwell was. Maxwell expressed Fara

day's ideas about lines of force in terms of mathematical equa

tions for magnetic and electric fields-that is, distributions of 

magnetic and electrical charge throughout space. By 1864, he 

had refined his theory down to a system of four differential 

equations that related changes in the magnetic field to 

changes in the electric field. The equations are elegant, and 

reveal a curious symmetry between electricity and magnet

ism, each affecting the other in a similar manner. 

It is here, in the elegant symbolism of Maxwell's equa

tions, that humanity made the giant leap from violins to 

videos: a series of simple algebraic manipulations extracted 

the wave equation from Maxwell's equations-which implied 

the existence of electromagnetic waves. Moreover, the wave 

equation implied that these electromagnetic waves traveled 

with the speed of light. One immediate deduction was that 

light itself is an electromagnetic wave-after all, the most 

obvious thing that travels at the speed of light is light. But just 

as the violin string can vibrate at many frequencies, so

according to the wave equation-can the electromagnetic 
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field. For waves that are visible to the human eye, it turns out 

that frequency corresponds to color. Strings with different fre

quencies produce different sounds; visible electromagnetic 

waves with different frequencies produce different colors. 

When the frequency is outside the visible range, the waves are 

not light waves but something else. 

What? When Maxwell proposed his equations, nobody 

knew. In any case, all this was pure surmise, based on the 

assumption that Maxwell's equations really do apply to the 

physical world. His equations needed to be tested before these 

waves could be accepted as real. Maxwell's ideas found some 

favor in Britain, but they were almost totally ignored abroad 

until 1886, when the German physicist Heinrich Hertz gener

ated electromagnetic waves-at the frequency that we now 

call radio-and detected them experimentally. The final 

episode of the saga was supplied by Guglielmo Marconi, who 

successfully carried out the first wireless telegraphy in 1895 

and transmitted and received the first transatlantic radio sig

nals in 1901. 

The rest, as they say, is history. With it came radar, televi

sion, and videotape. 

Of course, this is just a sketch of a lengthy and intricate 

interaction between mathematics, physics, engineering, and 

finance. No single person can claim credit for the invention of 

radio, neither can any single subject. It is conceivable that, 

had the mathematicians not already known a lot about the 

wave equation, Maxwell or his successors would have 

worked out what it implied anyway. But ideas have to attain a 

critical mass before they explode, and no innovator has the 

time or the imagination to create the tools to make the tools to 

make the tools that ... even if they are intellectual tools. The 
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plain fact is that there is a clear historical thread beginning 

with violins and ending with videos. Maybe on another 

planet things would have happened differently; but that's 

how they happened on ours. 

And maybe on another planet things would not have hap

pened differently-well, not very differently. Maxwell's wave 

equation is extremely complicated: it describes variations in 

both the electrical and magnetic fields simultaneously, in 

three-dimensional space. The violin-string equation is far 

simpler, with variation in just one quantity-position-along 

a one-dimensional line. Now, mathematical discovery gener

ally proceeds from the simple to the complex. In the absence 

of experience with simple systems such as vibrating strings, a 

"goal-oriented" attack on the problem of wireless telegraphy 

(sending messages without wires, which is where that slightly 

old-fashioned name comes from) would have stood no more 

chance of success than an attack on antigravity or faster-than

light drives would do today. Nobody would know where to 

start. 

Of course, violins are accidents of human culture-indeed, 

of European culture. But vibrations of a linear object are uni

versal-they arise all over the place in one guise or another. 

Among the arachnid aliens of Betelgeuse II, it might perhaps 

have been the vibrations of a thread in a spiderweb, created 

by a struggling insect, that led to the discovery of electromag

netic waves. But it takes some clear train of thought to devise 

the particular sequence of experiments that led Heinrich 

Hertz to his epic discovery, and that train of thought has to 

start with something simple. And it is mathematics that 

reveals the simplicities of nature, and permits us to generalize 

from simple examples to the complexities of the real world. It 
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took many people from many different areas of human activ

ity to turn a mathematical insight into a useful product. But 

the next time you go jogging wearing a Walkman, or switch on 

your TV, or watch a videotape, pause for a few seconds to 

remember that without mathematicians none of these marvels 

would ever have been invented, 



CHAPTER 6 

BROKEN SYMMETRY 

Something in the human mind is attracted to symmetry. Sym

metry appeals to our visual sense, and thereby plays a role in 

our sense of beauty. However, perfect symmetry is repetitive 

and predictable, and our minds also like surprises, so we 

often consider imperfect symmetry to be more beautiful than 

exact mathematical symmetry. Nature, too, seems to be 

attracted to symmetry, for many of the most striking patterns 

in the natural world are symmetric. And nature also seems to 

be dissatisfied with too much symmetry, for nearly all the 

symmetric patterns in nature are less symmetric than the 

causes that give rise to them. 

This may seem a strange thing to say; you may recall that 

the great physicist Pierre Curie, who with his wife, Marie, dis

covered radioactivity, stated the general principle that "effects 

are as symmetric as their causes." However, the world is full 

of effects that are not as symmetric as their causes, and the 

reason for this is a phenomenon known as "spontaneous sym

metry breaking." 

Symmetry is a mathematical concept as well as an aes

thetic one, and it allows us to classify different types of regu

lar pattern and distinguish between them. Symmetry breaking 

71 
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is a more dynamic idea, describing changes in pattern. Before 

we can understand where nature's patterns come from and 

how they can change, we must find a language in which to 

describe what they are. 

What is symmetry? 

Let's work our way to the general from the particular. One 

of the most familiar symmetric forms is the one inside which 

you spend your life. The human body is "bilaterally symmet

ric," meaning that its left half is (near enough) the same as its 

right half. As noted, the bilateral symmetry of the human form 

is only approximate: the heart is not central, nor are the two 

sides of the face identical. But the overall form is very close to 

one that has perfect symmetry, and in order to describe the 

mathematics of symmetry we can imagine an idealized 

human figure whose left side is exactly the same as its right 

side. But exactly the same? Not entirely. The two sides of the 

figure occupy different regions of space; moreover, the left 

side is a reversal of the right-its mirror image. 

As soon as we use words like "image," we are already 

thinking of how one shape corresponds to the other-of how 

you might move one shape to bring it into coincidence with 

the other. Bilateral symmetry means that if you reflect the left 

half in a mirror, then you obtain the right half. Reflection is a 

mathematical concept, but it is not a shape, a number, or a 

formula. It is a transformation-that is, a rule for moving 

things around. 

There are many possible transformations, but most are not 

symmetries. To relate the halves correctly, the mirror must be 

placed on the symmetry axis, which divides the figure into its 

two related halves. Reflection then leaves the human form 

invariant-that is, unchanged in appearance. So we have 
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found a precise mathematical characterization of bilateral 

symmetry-a shape is bilaterally symmetric if it is invariant by 

reflection. More generally, a symmetry of an object or system 

is any transformation that leaves it invariant. This description 

is a wonderful example of what I earlier called the "thingifica

tion of processes": the process "move like this" becomes a 

thing-a symmetry. This simple but elegant characterization 

opens the door to an immense area of mathematics. 

There are many different kinds of symmetry. The most 

important ones are reflections, rotations, and translations-or, 

less formally, flips, turns, and slides. If you take an object in 

the plane, pick it up, and flip it over onto its back, you get the 

same effect as if you had reflected it in a suitable mirror. To 

find where the mirror should go, choose some point on the 

original object and look at where that point ends up when the 

object is flipped. The mirror must go halfway between the 

point and its image, at right angles to the line that joins them 

(see figure 3). Reflections can also be carried out in three

dimensional space, but now the mirror is of a more familiar 

kind-namely, a flat surface. 

To rotate an object in the plane, you choose a point, called 

the center, and turn the object about that center, as a wheel 

turns about its hub. The number of degrees through which you 

turn the object determines the "size" of the rotation. For exam

ple, imagine a flower with four identical equally spaced petals. 

If you rotate the flower 90°, it looks exactly the same, so the 

transformation "rotate through a right angle" is a symmetry of 

the flower. Rotations can occur in three-dimensional space 

too, but now you have to choose a line, the axis, and spin 

objects on that axis as the Earth spins on its axis. Again, you 

can rotate objects through different angles about the same axis. 
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OBJECT 

MIRROR IMAGE 

FIGURE I. 
Where is the mirror? Given an object and a mirror image of that 
object, choose any point of the object and the corresponding point of 
the image, Join them by a line, The mirror must be at right angles to 
the midpoint of that line. 

Translations are transformations that slide objects along 

without rotating them. Think of a tiled bathroom wall. If you 

take a tile and slide it horizontally just the right distance, it 

will fit on top of a neighboring tile. That distance is the width 

of a tile. If you slide it two widths of a tile, or three, or any 

whole number, it also fits the pattern. The same is true if you 

slide it in a vertical direction, or even if you use a combina

tion of horizontal and vertical slides. In fact, you can do more 

than just sliding one tile-you can slide the entire pattern of 

tiles. Again, the pattern fits neatly on top of its original posi

tion only when you use a combination of horizontal and verti

cal slides through distances that are whole number multiples 

of the width of a tile. 



BROKEN SYMMETRY 77 

Reflections capture symmetries in which the left half of a 

pattern is the same as the right half, like the human body. 

Rotations capture symmetries in which the same units repeat 

around circles, like the petals of a flower. Translations cap

ture symmetries in which units are repeated, like a regular 

array of tiles; the bees' honeycomb, with its hexagonal "tiles," 

is an excellent naturally occurring example. 

Where do the symmetries of natural patterns come from? 

Think of a still pond, so flat that it can be thought of as a 

mathematical plane, and large enough that it might as well 

be a plane for all that the edges matter. Toss a pebble into 

the pond. You see patterns, ripples, circular waves seem

ingly moving outward away from the point of impact of the 

pebble. We've all seen this, and nobody is greatly surprised. 

After all, we saw the cause: it was the pebble. If you don't 

throw pebbles in, or anything else that might disturb the sur

face, then you won't get waves. All you'll get is a still, flat, 

planar pond. 

Ripples on a pond are examples of broken symmetry. An 

ideal mathematical plane has a huge amount of symmetry: 

every part of it is identical to every other part. You can trans

late the plane through any distance in any direction, rotate it 

through any angle about any center, reflect it in any mirror 

line, and it still looks exactly the same. The pattern of circular 

ripples, in contrast, has less symmetry. It is symmetric only 

with respect to rotations about the point of impact of the peb

ble, and reflections in mirror lines that run through that point. 

No translations, no other rotations, no other reflections. The 

pebble breaks the symmetry of the plane, in the sense that 

after the pebble has disturbed the pond, many of its symme

tries are lost. But not all, and that's why we see a pattern. 
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However, none of this is surprising, because of the pebble, 

In fact, since the impact of the pebble creates a special point, 

different from all the others, the symmetries of the ripples are 

exactly what you would expect. They are precisely the sym

metries that do not move that special point. So the symmetry 

of the pond is not spontaneously broken when the ripples 

appear, because you can detect the stone that causes the trans

lational symmetries to be lost. 

You would be more surprised-a lot more surprised-if a 

perfectly flat pond suddenly developed a series of concentric 

circular ripples without there being any obvious cause, You 

would imagine that perhaps a fish beneath the surface had 

disturbed it, or that something had fallen in and you had not 

seen it because it was moving too fast. So strong is the 

ingrained assumption that patterns must have evident causes 

that when in 1958 the Russian chemist B. P. Belousov discov

ered a chemical reaction that spontaneously formed patterns, 

apparently out of nothing, his colleagues refused to believe 

him. They assumed that he had made a mistake. They didn't 

bother checking his work: he was so obviously wrong that 

checking his work would be a waste of time. 

Which was a pity, because he was right. 

The particular pattern that Belousov discovered existed 

not in space but in time: his reaction oscillated through a 

periodic sequence of chemical changes. By 1963, another 

Russian chemist, A. M. Zhabotinskii, had modified Be

lousov's reaction so that it formed patterns in space as well. 

In their honor, any similar chemical reaction is given the 

generic name "Belousov-Zhabotinskii [or B-ZJ reaction." The 

chemicals used nowadays are different and simpler, thanks to 

some refinements made by the British reproductive biologist 
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Jack Cohen and the American mathematical biologist Arthur 

Winfree, and the experiment is now so simple that it can be 

done by anyone with access to the necessary chemicals. These 

are slightly esoteric, but there are only four of them.' 

In the absence of the appropriate apparatus, I'll tell you 

what happens if you do the experiment. The chemicals are all 

liquids: you mix them together in the right order and pour 

them into a flat dish. The mixture turns blue, then red: let it 

stand for a while. For ten or sometimes even twenty minutes, 

nothing happens; it's just like gazing at a featureless flat 

pond-except that it is the color of the liquid that is feature

less, a uniform red. This uniformity is not surprising; after all, 

you blended the liquids. Then you notice a few tiny blue 

spots appearing-and that is a surprise. They spread, forming 

circular blue disks. Inside each disk, a red spot appears, turn

ing the disk into a blue ring with a red center. Both the blue 

ring and the red disk grow, and when the red disk gets big 

enough, a blue spot appears inside it. The process continues, 

forming an ever-growing series of "target patterns"-concen

tric rings of red and blue. These target patterns have exactly 

the same symmetries as the rings of ripples on a pond; but 

this time you can't see any pebble. It is a strange and mysteri

ous process in which paUern-order-appears to arise of its 

own accord from the disordered, randomly mixed liquid. No 

wonder the chemists didn't believe Belousov. 

But that's not the end of the B-Z reaction's party tricks. If 

you tilt the dish slightly and then put it back where it was, or 

dip a hot wire into it, you can break the rings and turn them 

'The precise recipe is given in the Notes to The Collapse of Chaos, by Jack 
Cohen and Ian Stewart. 
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into rotating red and blue spirals, If Belousov had claimed 

that, you would have seen steam coming out of his col

leagues' ears, 

This kind of behavior is not just a chemical conjuring 

trick. The regular beating of your heart relies on exactly the 

same patterns, but in that case they are patterns in waves of 

electrical activity, Your heart is not just a lump of undifferen

tiated muscle tissue, and it doesn't automatically contract all 

at once, Instead, it is composed of millions of tiny muscle 

fibers, each one of them a single cell. The fibers contract in 

response to electrical and chemical signals, and they pass 

those signals on to their neighbors, The problem is to make 

sure that they all contract roughly in synchrony, so that the 

heart beats as a whole, To achieve the necessary degree of 

synchronization, your brain sends electrical signals to your 

heart. These signals trigger electrical changes in some of the 

muscle fibers, which then affect the muscle fibers next to 

them-so that ripples of activity spread, just like the ripples 

on a pond or the blue disks in the B-Z reaction. As long as the 

waves form complete rings, the heart's muscle fibers contract 

in synchrony and the heart beats normally. But if the waves 

become spirals-as they can do in diseased hearts-the result 

is an incoherent set of local contractions, and the heart fibril

lates. If fibrillation goes unchecked for more than a few min

utes, it results in death. So every single one of us has a vested 

interest in circular and spiral wave patterns. 

However in the heart, as in the pond, we can see a specific 

cause for the wave patterns: the signals from the brain. In the 

B-Z reaction, we cannot: the symmetry breaks sponta

neously-"of its own accord"-without any external stimu

lus. The term "spontaneous" does not imply that there is no 
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cause, however: it indicates that the cause can be as tiny and 

as insignificant as you please. Mathematically, the crucial 

point is that the uniform distribution of chemicals-the fea

tureless red liquid-is unstable. If the chemicals cease to be 

equally mixed, then the delicate balance that keeps the solu

tion red is upset, and the resulting chemical changes trigger 

the formation of a blue spot. From that moment on, the whole 

process becomes much more comprehensible, because now 

the blue spot acts like a chemical "pebble," creating sequen

tial ripples of chemical activity. But-at least, as far as the 

mathematics goes-the imperfection in the symmetry of the 

liquid which triggers the blue spot can be vanishingly small, 

provided it is not zero. In a real liquid, there are always tiny 

bits of dust, or bubbles-or even just molecules undergoing 

the vibrations we call "heat"-to disturb the perfect symme

try. That's all it takes. An infinitesimal cause produces a 

large-scale effect, and that effect is a symmetric pattern. 

Nature's symmetries can be found on every scale, from the 

structure of subatomic particles to that of the entire universe. 

Many chemical molecules are symmetric. The methane mole

cule is a tetrahedron-a triangular-sided pyramid-with one 

carbon atom at its center and four hydrogen atoms at its corners. 

Benzene has the sixfold symmetry of a regular hexagon. The 

fashionable molecule buckminsterfullerene is a truncated icosa

hedral cage of sixty carbon atoms. (An icosahedron is a regular 

solid with twenty triangular faces; "truncated" means that the 

corners are cut off.) Its symmetry lends it a remarkable stability, 

which has opened up new possibilities for organic chemistry. 

On a slightly larger scale than molecules, we find symme

tries in cellular structure; at the heart of cellular replication 

lies a tiny piece of mechanical engineering. Deep within each 
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living cell, there is a rather shapeless structure known as the 

centrosome, which sprouts long thin microtubules, basic 

components of the cell's internal "skeleton," like a diminu

tive sea urchin. Centro somes were first discovered in 1887 

and play an important role in organizing cell division. How

ever, in one respect the structure of the centrosome is aston

ishingly symmetric. Inside it are two structures, known as 

centrioles, positioned at right angles to each other. Each cen

triole is cylindrical, made from twenty-seven microtubules 

fused together along their lengths in threes, and arranged with 

perfect ninefold symmetry. The microtubules themselves also 

have an astonishingly regular symmetric form. They are hol

low tubes, made from a perfect regular checkerboard pattern 

of units that contain two distinct proteins, alpha- and beta

tubulin. One day, perhaps, we will understand why nature 

chose these symmetric forms. But it is amazing to see sym

metric structures at the core of a living cell. 

Viruses are often symmetric, too, the commonest shapes 

being helices and icosahedrons. The helix is the form of the 

influenza virus, for instance. Nature prefers the icosahedron 

above all other viral forms: examples include herpes, chicken

pox, human wart, canine infectious hepatitis, turnip yellow 

mosaic, adenovirus, and many others. The adenovirus is 

another striking example of the artistry of molecular engineer

ing. It is made from 252 virtually identical subunits, with 21 

of them, fitted together like billiard balls before the break, 

making up each triangular face. (Subunits along the edges lie 

on more than one face and corner units lie on three, which is 

why 20 x 21 is not equal to 252.) 

Nature exhibits symmetries on larger scales, too. A devel

oping frog embryo begins life as a spherical cell, then loses 



BROKEN SYMMETRY .1 

symmetry step by step as it divides, until it has become a 

blastula, thousands of tiny cells whose overall form is again 

spherical. Then the blastula begins to engulf part of itself, in 

the process known as gastrulation. During the early stages of 

this collapse, the embryo has rotational symmetry about an 

axis, whose position is often determined by the initial distri

bution of yolk in the egg, or sometimes by the point of sperm 

entry. Later this symmetry is broken, and only a single mirror 

symmetry is retained, leading to the bilateral symmetry of the 

adult. 

Volcanoes are conical, stars are spherical, galaxies are spi

ral or elliptical. According to some cosmologists, the universe 

itself resembles nothing so much as a gigantic expanding ball. 

Any understanding of nature must include an understanding 

of these prevalent patterns. It must explain why they are so 

common, and why many different aspects of nature show the 

same patterns. Raindrops and stars are spheres, whirlpools 

and galaxies are spirals, honeycombs and the Devil's Cause

way are arrays of hexagons. There has to be a general princi

ple underlying such patterns; it is not enough just to study 

each example in isolation and explain it in terms of its own 

internal mechanisms. 

Symmetry breaking is just such a principle. 

But in order for symmetry to break, it has to be present to 

start with. At first this would seem to replace one problem of 

pattern formation with another: before we can explain the cir

cular rings on the pond, in other words, we have to explain 

the pond. But there is a crucial difference between the rings 

and the pond. The symmetry of the pond is so extensive

every point on its surface being equivalent to every other

that we do not recognize it as being a pattern. Instead, we see 
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it as bland uniformity. It is very easy to explain bland unifor

mity: it is what happens to systems when there is no reason 

for their component parts to differ from each other. It is, so to 

speak, nature's default option. If something is symmetric, its 

component features are replaceable or interchangeable. One 

corner of a square looks pretty much the same as any other, so 

we can interchange the corners without altering the square's 

appearance. One atom of hydrogen in methane looks pretty 

much like any other, so we can interchange those atoms. One 

region of stars in a galaxy looks pretty much like any other, so 

we can interchange parts of two different spiral arms without 

making an important difference. 

In short, nature is symmetric because we live in a mass

produced universe-analogous to the surface of a pond. Every 

electron is exactly the same as every other electron, every pro

ton is exactly the same as every other proton, every region of 

empty space is exactly the same as every other region of 

empty space, every instant of time is exactly the same as 

every other instant of time. And not only are the structure of 

space, time, and matter the same everywhere: so are the laws 

that govern them. Albert Einstein made such "invariance 

principles" the cornerstone of his approach to physics; he 

based his thinking on the idea that no particular point in 

spacetime is special. Among other things, this led him to the 

principle of relativity, one of the greatest physical discoveries 

ever made. 

This is all very well, but it produces a deep paradox. If the 

laws of physics are the same at all places and at all times, why 

is there any "interesting" structure in the universe at all? 

Should it not be homogeneous and changeless? If every place 

in the universe were interchangeable with every other place, 
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then all places would be indistinguishable; and the same 

would hold for all times. But they are not. The problem is, if 

anything, made worse by the cosmological theory that the 

universe began as a single point, which exploded from noth

ingness billions of years ago in the big bang. At the instant of 

the universe's formation, all places and all times were not 

only indistinguishable but identical. So why are they differ

ent now? 

The answer is the failure of Curie's Principle, noted at the 

start of this chapter. Unless that principle is hedged around 

with some very subtle caveats about arbitrarily tiny causes, it 

offers a misleading intuition about how a symmetric system 

should behave. Its prediction that adult frogs should be bilat

erally symmetric (because embryonic frogs are bilaterally 

symmetric, and according to Curie's Principle the symmetry 

cannot change) appears at first sight to be a great success; but 

the same argument applied at the spherical blastula stage pre

dicts with equal force that an adult frog should be a sphere. 

A much better principle is the exact opposite, the princi

ple of spontaneous symmetry breaking. Symmetric causes 

often produce less symmetric effects. The evolving universe 

can break the initial symmetries of the big bang. The spherical 

blastula can develop into the bilateral frog. The 252 perfectly 

interchangeable units of adenovirus can arrange themselves 

into an icosahedron-an arrangement in which some units 

will occupy special places, such as corners. A set of twenty

seven perfectly ordinary microtubules can get together to cre

ate a centriole. 

Fine, but why patterns? Why not a structureless mess, in 

which all symmetries are broken? One of the strongest threads 

that runs through every study ever made of symmetry break-
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ing is that the mathematics does not work this way. Symme

tries break reluctantly. There is so much symmetry lying 

around in our mass-produced universe that there is seldom a 

good reason to break all of it. So rather a lot survives. Even 

those symmetries that do get broken are still present, in a 

sense, but now as potential rather than actual form. For exam

ple, when the 252 units of the adenovirus began to link up, 

anyone of them could have ended up in a particular comer. 

In that sense, they are interchangeable. But only one of them 

actually does end up there, and in that sense the symmetry is 

broken: they are no longer fully interchangeable. But some of 

the symmetry remains, and we see an icosahedron. 

In this view, the symmetries we observe in nature are bro

ken traces of the grand, universal symmetries of our mass

produced universe. Potentially the universe could exist in any 

of a huge symmetric system of possible states, but actually it 

must select one of them. In so doing, it must trade some of its 

actual symmetry for unobservable, potential symmetry. But 

some of the actual symmetry may remain, and when it does 

we observe a pattern. Most of nature's symmetric patterns 

arise out of some version of this general mechanism. 

In a negative sort of way, this rehabilitates Curie's Princi

ple: if we permit tiny asymmetric disturbances, which can 

trigger an instability of the fully symmetric state, then our 

mathematical system is no longer perfectly symmetric. But 

the important point is that the tinest departure from symme

try in the cause can lead to a total loss of symmetry in the 

resulting effect-and there are always tiny departures. That 

makes Curie's principle useless for the prediction of symme

tries. It is much more informative to model a real system after 

one with perfect symmetry, but to remember that such a 
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model has many possible states, only one of which will be 

realized in practice. Small disturbances cause the real system 

to select states from the range available to the idealized per

fect system. Today this approach to the behavior of symmetric 

systems provides one of the main sources of understanding of 

the general principles of pattern formation. 

In particular, the mathematics of symmetry breaking uni

fies what at first sight appear to be very disparate phenomena. 

For example, think about the patterns in sand dunes men

tioned in chapter 1. The desert can be modeled as a flat plane 

of sandy particles, the wind can be modeled as a fluid flowing 

across the plane. By thinking about the symmetries of such a 

system, and how they can break, many of the observed pat

terns of dunes can be deduced. For example, suppose the 

wind blows steadily in a fixed direction, so that the whole 

system is invariant under translations parallel to the wind. 

One way to break these translational symmetries is to create a 

periodic pattern of parallel stripes, at right angles to the wind 

direction. But this is the pattern that geologists call transverse 

dunes. If the pattern also becomes periodic in the direction 

along the stripes, then more symmetry breaks, and the wavy 

barchanoid ridges appear. And so on. 

However, the mathematical principles of symmetry-break

ing do not just work for sand dunes. They work for any sys

tem with the same symmetries-anything that flows across a 

planar surface creating patterns. You can apply the same basic 

model to a muddy river flowing across a coastal plain and 

depositing sediment, or the waters of a shallow sea in ebb and 

flow across the seabed-phenomena important in geology, 

because millions of years later the patterns that result have 

been frozen into the rock that the sandy seabed and the 
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muddy delta became. The list of patterns is identical to that 

for dunes. 

Or the fluid might be a liquid crystal, as found in digital

watch displays, which consist of a lot of long thin molecules 

that arrange themselves in patterns under the influence of a 

magnetic or electric field. Again, you find the same patterns. 

Or there might not be a fluid at all: maybe what moves is a 

chemical, diffusing through tissue and laying down genetic 

instructions for patterns on the skin of a developing animal. 

Now the analogue of transverse dunes is the stripes of a tiger 

or a zebra, and that of barchanoid ridges is the spots on a 

leopard or a hyena. 

The same abstract mathematics; different physical and bio

logical realizations. Mathematics is the ultimate in technology 

transfer-but with mental technology, ways of thinking, being 

transferred, rather than machines. This universality of sym

metry breaking explains why living systems and nonliving 

ones have many patterns in common. Life itself is a process of 

symmetry creation-of replication; the universe of biology is 

just as mass-produced as the universe of physics, and the 

organic world therefore exhibits many of the patterns found 

in the inorganic world. The most obvious symmetries of liv

ing organisms are those of form-icosahedral viruses, the spi

ral shell of Nautilus, the helical horns of gazelles, the remark

able rotational symmetries of starfish and jellyfish and 

flowers. But symmetries in the living world go beyond form 

into behavior-and not just the symmetric rhythms of loco

motion I mentioned earlier. The territories of fish in Lake 

Huron are arranged just like the cells in a honeycomb-and 

for the same reasons. The territories, like the bee grubs, can

not all be in the same place-which is what perfect symmetry 
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would imply. Instead, they pack themselves as tightly as they 

can without one being different from another, and the behav

ioral constraint by itself produces a hexagonally symmetric 

tiling. And that resembles yet another striking instance of 

mathematical technology transfer, for the same symmetry 

breaking mechanism arranges the atoms of a crystal into a reg

ular lattice-a physical process that ultimately supports 

Kepler's theory of the snowflake. 

One of the more puzzling types of symmetry in nature is 

mirror symmetry, symmetry with respect to a reflection. Mir

ror symmetries of three-dimensional objects cannot be real

ized by turning the objects in space-a left shoe cannot be 

turned into a right shoe by rotating it. However, the laws of 

physics are very nearly mirror-symmetric, the exceptions 

being certain interactions of subatomic particles. As a result, 

any molecule that is not mirror-symmetric potentially exists 

in two different forms-left- and right-handed, so to speak. 

On Earth, life has selected a particular molecular handedness: 

for example, for amino acids. Where does this particular 

handedness of terrestrial life come from? It could have been 

just an accident-primeval chance propagated by the mass

production techniques of replication. If so, we might imagine 

that on some distant planet, creatures exist whose molecules 

are mirror images of ours. On the other hand, there may be a 

deep reason for life everywhere to choose the same direction. 

Physicists currently recognize four fundamental forces in 

nature: gravity, electromagnetism, and the strong and weak 

nuclear interactions. It is known that the weak force violates 

mirror symmetry-that is, it behaves differently in left- or 

right-handed versions of the same physical problem. As the 

Austrian-born physicist Wolfgang Pauli put it, "The Lord is a 
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weak left-hander." One remarkable consequence of this viola

tion of mirror symmetry is the fact that the energy levels of 

molecules and that of their mirror images are not exactly 

equal. The effect is extremely small: the difference in energy 

levels between one particular amino acid and its mirror image 

is roughly one part in 1017 • This may seem very tiny-but we 

saw that symmetry breaking requires only a very tiny distur

bance. In general, lower-energy forms of molecules should be 

favored in nature. For this amino acid, it can be calculated 

that with 98% probability the lower energy form will become 

dominant within a period of about a hundred thousand years. 

And indeed, the version of this amino acid which is found in 

living organisms is the lower-energy one. 

In chapter 5, I mentioned the curious symmetry of 

Maxwell's equations relating electricity and magnetism. 

Roughly speaking, if you interchange all the symbols for the 

electric field with those for the magnetic field, you re-create 

the same equations. This symmetry lies behind Maxwell's 

unification of electrical and magnetic forces into a single elec

tromagnetic force. There is an analogous symmetry-though 

an imperfect one-in the equations for the four basic forces of 

nature, suggesting an even grander unification: that all four 

forces are different aspects of the same thing. Physicists have 

already achieved a unification of the weak and electromag

netic forces. According to current theories, all four fundamen

tal forces should become unified-that is, symmetrically 

related-at the very high energy levels prevailing in the early 

universe. This symmetry of the early universe is broken in our 

own universe. In short, there is an ideal mathematical uni

verse in which all of the fundamental forces are related in a 

perfectly symmetric manner-but we don't live in it. 
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That means that our universe could have been different; it 

could have been any of the other universes that, potentially, 

could arise by breaking symmetry in a different way. That's 

quite a thought. But there is an even more intriguing thought: 

the same basic method of pattern formation, the same mecha

nism of symmetry breaking in a mass-produced universe, gov

erns the cosmos, the atom, and us. 





CHAPTER 7 

THE RHYTHM OF LIFE 

Nature is nothing if not rhythmic, and its rhythms are many 

and varied. Our hearts and lungs follow rhythmic cycles 

whose timing is adapted to our body's needs. Many of 

nature's rhythms are like the heartbeat: they take care of 

themselves, running "in the background." Others are like 

breathing: there is a simple "default" pattern that operates as 

long as nothing unusual is happening, but there is also a more 

sophisticated control mechanism that can kick in when nec

essary and adapt those rhythms to immediate needs. Control

lable rhythms of this kind are particularly common-and par

ticularly interesting-in locomotion. In legged animals, the 

default patterns of motion that occur when conscious control 

is not operating are called gaits. 

Until the development of high-speed photography, it was 

virtually impossible to find out exactly how an animal's legs 

moved as it ran or galloped: the motion is too fast for the 

human eye to discern. Legend has it that the photographic 

technique grew out of a bet on a horse. In the 1870s, the rail

road tycoon Leland Stanford bet twenty-five thousand dollars 

that at some times a trotting horse has all four feet completely 

91 
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off the ground. To settle the issue, a photographer, who was 

born Edward Muggeridge but changed his name to Eadweard 

Muybridge, photographed the different phases of the gait of 

the horse, by placing a line of cameras with tripwires for the 

horse to trot past. Stanford, it is said, won his bet. Whatever 

the truth of the story, we do know that Muybridge went on to 

pioneer the scientific study of gaits. He also adapted a 

mechanical device known as the zoetrope to display them as 

"moving pictures," a road that in short order led to Holly

wood. So Muybridge founded both a science and an art. 

Most of this chapter is about gait analysis, a branch of 

mathematical biology that grew up around the questions 

"How do animals move?" and "Why do they move like that?" 

To introduce a little more variety, the rest is about rhythmic 

patterns that occur in entire animal populations, one dramatic 

example being the synchronized flashing of some species of 

fireflies, which is seen in some regions of the Far East, includ

ing Thailand. Although biological interactions that take place 

in individual animals are very different from those that take 

place in populations of animals, there is an underlying mathe

matical unity, and one of the messages of this chapter is that 

the same general mathematical concepts can apply on many 

different levels and to many different things. Nature respects 

this unity, and makes good use ofit. 

The organizing principle behind many such biological 

cycles is the mathematical concept of an oscillator-a unit 

whose natural dynamic causes it to repeat the same cycle of 

behavior over and over again. Biology hooks together huge 

"circuits" of oscillators, which interact with each other to cre

ate complex patterns of behavior. Such "coupled oscillator 

networks" are the unifying theme of this chapter. 
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Why do systems oscillate at all? The answer is that this is 

the simplest thing you can do if you don't want, or are not 

allowed, to remain still. Why does a caged tiger pace up and 

down? Its motion results from a combination of two con

straints. First, it feels restless and does not wish to sit still. 

Second, it is confined within the cage and cannot simply dis

appear over the nearest hill. The simplest thing you can do 

when you have to move but can't escape altogether is to oscil

late. Of course, there is nothing that forces the oscillation to 

repeat a regular rhythm; the tiger is free to follow an irregular 

path around the cage. But the simplest option-and therefore 

the one most likely to arise both in mathematics and in 

nature--is to find some series of motions that works, and 

repeat it over and over again. And that is what we mean by a 

periodic oscillation. In chapter 5, I described the vibration of 

a violin string. That, too, moves in a periodic oscillation, and 

it does so for the same reasons as the tiger. It can't remain still 

because it has been plucked, and it can't get away altogether 

because its ends are pinned down and its total energy cannot 

increase. 

Many oscillations arise out of steady states. As conditions 

change, a system that has a steady state may lose it and begin 

to wobble periodically. In 1942, the German mathematician 

Eberhard Hopf found a general mathematical condition that 

guarantees such behavior: in his honor, this scenario is 

known as Hopf bifurcation. The idea is to approximate the 

dynamics of the original system in a particularly simple way, 

and to see whether a periodic wobble arises in this simplified 

system. Hopf proved that if the simplified system wobbles, 

then so does the original system. The great advantage of this 

method is that the mathematical calculations are carried out 
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only for the simplified system, where they are relatively 

straightforward, whereas the result of those calculations tells 

us how the original system behaves. It is difficult to tackle the 

original system directly, and Hopf's approach sidesteps the 

difficulties in a very effective manner. 

The word "bifurcation" is used because of a particular 

mental image of what is happening, in which the periodic 

oscillations "grow out from" the original steady state like a 

ripple on a pond growing out from its center. The physical 

interpretation of this mental picture is that the oscillations are 

very small to start with, and steadily become larger. The 

speed with which they grow is unimportant here. 

For example, the sounds made by a clarinet depend on 

Hopf bifurcation. As the clarinetist blows air into the instru

ment, the reed-which was stationary-starts to vibrate. If the 

air flows gently, the vibration is small and produces a soft 

note. If the musician blows harder, the vibration grows and 

the note becomes louder. The important thing is that the 

musician does not have to blow in an oscillatory way (that is, 

in a rapid series of short puffs) to make the reed oscillate. 

This is typical of Hopf bifurcation: if the simplified system 

passes Hopf's mathematical test, then the real system will 

begin to oscillate of its own accord. In this case, the simpli

fied system can be interpreted as a fictitious mathematical 

clarinet with a rather simple reed, although such an interpre

tation is not actually needed to carry out the calculations. 

Hopf bifurcation can be seen as a special type of symmetry 

breaking. Unlike the examples of symmetry breaking 

described in the previous chapter, the symmetries that break 

relate not to space but to time. Time is a single variable, so 

mathematically it corresponds to a line-the time axis. There 
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are only two types of line symmetry: translations and reflec

tions. What does it mean for a system to be symmetric under 

time translation? It means that if you observe the motion of 

the system and then wait for some fixed interval and observe 

the motion of the system again, you will see exactly the same 

behavior. That is a description of periodic oscillations: if you 

wait for an interval equal to the period, you see exactly the 

same thing. So periodic oscillations have time-translation 

symmetry. 

What about reflectional symmetries of time? Those corre

spond to reversing the direction in which time flows, a more 

subtle and philosophically difficult concept. Time reversal is 

peripheral to this chapter, but it is an extremely interesting 

question, which deserves to be discussed somewhere, so why 

not here? The law of motion is symmetric under time reversal. 

If you make a film of any "legal" physical motion (one that 

obeys the laws), and run the movie backward, what you see is 

also a legal motion. However, the legal motions common in 

our world often look bizarre when run backward. Raindrops 

falling from the sky to create puddles are an everyday sight; 

puddles that spit raindrops skyward and vanish are not. The 

source of the difference lies in the initial conditions. Most ini

tial conditions break time-reversal symmetry. For example, 

suppose we decide to start with raindrops falling downward. 

This is not a time-symmetric state: its time reversal would 

have raindrops falling upward. Even though the laws are 

time-reversible, the motion they produce need not be, because 

once the time-reversal symmetry has been broken by the 

choice of initial conditions, it remains broken. 

Back to the oscillators. I've now explained that periodic 

oscillations possess time-translation symmetry, but I haven't yet 
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told you what symmetry is broken to create that pattern. The 

answer is "all time translations." A state that is invariant under 

these symmetries must look exactly the same at all instants of 

time--not just intervals of one period. That is, it must be a 

steady state. So when a system whose state is steady begins to 

oscillate periodically, its time-translational symmetries decrease 

from all translations to only translations by a fixed interval. 

This all sounds rather theoretical. However, the realization 

that Hopf bifurcation is really a case of temporal symmetry 

breaking has led to an extensive theory of Hopf bifurcation in 

systems that have other symmetries as well-especially spa

tial ones. The mathematical machinery does not depend on 

particular interpretations and can easily work with several 

different kinds of symmetry at once. One of the success sto

ries of this approach is a general classification of the patterns 

that typically set in when a symmetric network of oscillators 

undergoes a Hopf bifurcation, and one of the areas to which it 

has recently been applied is animal locomotion. 

Two biologically distinct but mathematically similar types 

of oscillator are involved in locomotion. The most obvious 

oscillators are the animal's limbs, which can be thought of as 

mechanical systems-linked assemblies of bones, pivoting at 

the joints, pulled this way and that by contracting muscles. 

The main oscillators that concern us here, however, are to be 

found in the creature's nervous system, the neural circuitry 

that generates the rhythmic electrical signals that in tum stim

ulate and control the limbs' activity. Biologists call such a cir

cuit a CPG, which stands for "central pattern generator." Cor

respondingly, a student of mine took to referring to a limb by 

the acronym LEG, allegedly for "locomotive excitation genera

tor." Animals have two, four, six, eight, or more LEGs, but we 
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know very little directly about the ePGs that control them, for 

reasons I shall shortly explain. A lot of what we do know has 

been arrived at by working backward-or forward, if you 

like-from mathematical models. 

Some animals possess only one gait-only one rhythmic 

default pattern for moving their limbs. The elephant, for 

example, can only walk. When it wants to move faster, it 

ambles-but an amble is just a fast walk, and the patterns of 

leg movement are the same. Other animals possess many dif

ferent gaits; take the horse, for example. At low speeds, horses 

walk; at higher speeds, they trot; and at top speed they gallop. 

Some insert yet another type of motion, a canter, between a 

trot and a gallop. The differences are fundamental: a trot isn't 

just a fast walk but a different kind of movement altogether. 

In 1965, the American zoologist Milton Hildebrand 

noticed that most gaits possess a degree of symmetry. That is, 

when an animal bounds, say, both front legs move together 

and both back legs move together; the bounding gait preserves 

the animal's bilateral symmetry. Other symmetries are more 

subtle: for example, the left half of a camel may follow the 

same sequence of movements as the right, but half a period 

out of phase-that is, after a time delay equal to half the 

period. So the pace gait has its own characteristic symmetry: 

"reflect left and right, and shift the phase by half a period." 

You use exactly this type of symmetry breaking to move your

self around: despite your bilateral symmetry, you don't move 

both legs simultaneously! There's an obvious advantage to 

bipeds in not doing so: if they move both legs slowly at the 

same time they fall over. 

The seven most common quadrupedal gaits are the trot, 

pace, bound, walk, rotary gallop, transverse gallop, and can-
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ter, In the trot, the legs are in effect linked in diagonal pairs. 

First the front left and back right hit the ground together, then 

the front right and back left. In the bound, the front legs hit 

the ground together, then the back legs, The pace links the 

movements fore and aft: the two left legs hit the ground, then 

the two right. The walk involves a more complex but equally 

rhythmic pattern: front left, back right, front right, back left, 

then repeat. In the rotary gallop, the front legs hit the ground 

almost together, but with the right (say) very slightly later 

than the left; then the back legs hit the ground almost 

together, but this time with the left very slightly later than the 

right. The transverse gallop is similar, but the sequence is 

reversed for the rear legs. The canter is even more curious: 

first front left, then back right, then the other two legs simul

taneously, There is also a rarer gait, the pronk, in which all 

four legs move simultaneously. 

The pronk is uncommon, outside of cartoons, but is some

times seen in young deer. The pace is observed in camels, the 

bound in dogs; cheetahs use the rotary gallop to travel at top 

speed, Horses are among the more versatile quadrupeds, 

using the walk, trot, transverse gallop, and canter, depending 

on circumstances, 

The ability to switch gaits comes from the dynamics of 

CPGs. The basic idea behind CPG models is that the rhythms 

and the phase relations of animal gaits are determined by the 

natural oscillation patterns of relatively simple neural cir

cuits. What might such a circuit look like? Trying to locate a 

specific piece of neural circuitry in an animal's body is like 

searching for a particular grain of sand in a desert: to map out 

the nervous system of all but the simplest of animals is well 

beyond the capabilities even of today's science. So we have 
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to sneak up on the problem of ePG design in a less direct 

manner. 

One approach is to work out the simplest type of circuit 

that might produce all the distinct but related symmetry pat

terns of gaits. At first, this looks like a tall order, and we 

might be forgiven if we tried to concoct some elaborate struc

ture with switches that effected the change from one gait to 

another, like a car gearbox. But the theory of Hopf bifurcation 

tells us that there is a simpler and more natural way. It turns 

out that the symmetry patterns observed in gaits are strongly 

reminiscent of those found in symmetric networks of oscilla

tors. Such networks naturally possess an entire repertoire of 

symmetry-breaking oscillations, and can switch between 

them in a natural manner. You don't need a complicated gear

box. 

For example, a network representing the ePG of a biped 

requires only two identical oscillators, one for each leg. The 

mathematics shows that if two identical oscillators are cou

pled-connected so that the state of each affects that of the 

other-then there are precisely two typical oscillation pat

terns. One is the in-phase pattern, in which both oscillators 

behave identically. The other is the out-oJ-phase pattern, in 

which both oscillators behave identically except for a half

period phase difference. Suppose that this signal from the 

ePG is used to drive the muscles that control a biped's legs, 

by assigning one leg to each oscillator. The resulting gaits 

inherit the same two patterns. For the in-phase oscillation of 

the network, both legs move together: the animal performs a 

two-legged hopping motion, like a kangaroo. In contrast, the 

out-of-phase motion of the ePG produces a gait resembling 

the human walk. These two gaits are the ones most commonly 
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observed in bipeds, (Bipeds can, of course, do other things; 

for example, they can hop along on one leg-but in that case 

they effectively turn themselves into one-legged animals.) 

What about quadrupeds? The simplest model is now a sys

tem of four coupled oscillators-one for each leg. Now the 

mathematics predicts a greater variety of patterns, and nearly 

all of them correspond to observed gaits. The most symmetric 

gait, the pronk, corresponds to all four oscillators being syn

chronized-that is, to unbroken symmetry. The next most 

symmetric gaits-the bound, the pace, and the trot-corre

spond to grouping the oscillators as two out-of-phase pairs: 

front/back, left/right, or diagonally. The walk is a circulating 

figure-eight pattern and, again, occurs naturally in the mathe

matics. The two kinds of gallop are more subtle. The rotary 

gallop is a mixture of pace and bound, and the transverse gal

lop is a mixture of bound and trot. The canter is even more 

subtle and not as well understood. 

The theory extends readily to six-legged creatures such as 

insects. For example, the typical gait of a cockroach-and, 

indeed, of most insects-is the tripod, in which the middle 

leg on one side moves in phase with the front and back legs 

on the other side, and then the other three legs move together, 

half a period out of phase with the first set. This is one of the 

natural patterns for six oscillators connected in a ring. 

The symmetry-breaking theory also explains how animals 

can change gait without having a gearbox: a single network of 

oscillators can adopt different patterns under different condi

tions. The possible transitions between gaits are also orga

nized by symmetry. The faster the animal moves, the less 

symmetry its gait has: more speed breaks more symmetry. But 

an explanation of why they change gait requires more detailed 
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information on physiology. In 1981, D. F. Hoyt and R. C. Tay

lor discovered that when horses are permitted to select their 

own speeds, depending on terrain, they choose whichever 

gait minimizes their oxygen consumption. 

I've gone into quite a lot of detail about the mathematics of 

gaits because it is an unusual application of modern mathe

matical techniques in an area that at first sight seems totally 

unrelated. To end this chapter, I want to show you another 

application of the same general ideas, except that in this case 

it is biologically important that symmetry not be broken. 

One of the most spectacular displays in the whole of 

nature occurs in Southeast Asia, where huge swarms of fire

flies flash in synchrony. In his 1935 article" Synchronous 

Flashing of Fireflies" in the journal Science, the American 

biologist Hugh Smith provides a compelling description of 

the phenomenon: 

Imagine a tree thirty-five to forty feet high. apparently with a 

firefly on every leaf. and all the fireflies flashing in perfect uni

son at the rate of about three times in two seconds. the tree being 

in complete darkness between flashes. Imagine a tenth of a mile 

of river front with an unbroken line of mangrove trees with fire

flies on every leaf flashing in synchronism, the insects on the 

trees at the ends of the line acting in perfect unison with those 

between. Then. if one's imagination is sufficiently vivid. he may 

form some conception of this amazing spectacle. 

Why do the flashes synchronize? In 1990, Renato Mirollo 

and Steven Strogatz showed that synchrony is the rule for 

mathematical models in which every firefly interacts with 

every other. Again, the idea is to model the insects as a popu

lation of oscillators coupled together-this time by visual sig-
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nals. The chemical cycle used by each firefly to create a flash 

of light is represented as an oscillator. The population of fire

flies is represented by a network of such oscillators with fully 

symmetric coupling-that is, each oscillator affects all of the 

others in exactly the same manner. The most unusual feature 

of this model, which was introduced by the American biolo

gist Charles Peskin in 1975, is that the oscillators are pulse

coupled. That is, an oscillator affects its neighbors only at the 

instant when it creates a flash of light. 

The mathematical difficulty is to disentangle all these 

interactions, so that their combined effect stands out clearly. 

Mirollo and Strogatz proved that no matter what the initial 

conditions are, eventually all the oscillators become synchro

nized. The proof is based on the idea of absorption, which 

happens when two oscillators with different phases "lock 

together" and thereafter stay in phase with each other. Because 

the coupling is fully symmetric, once a group of oscillators has 

locked together, it cannot unlock. A geometric and analytic 

proof shows that a sequence of these absorptions must occur, 

which eventually locks all the oscillators together. 

The big message in both locomotion and synchronization 

is that nature's rhythms are often linked to symmetry, and 

that the patterns that occur can be classified mathematically 

by invoking the general principles of symmetry breaking. The 

principles of symmetry breaking do not answer every ques

tion about the natural world, but they do provide a unifying 

framework, and often suggest interesting new questions. In 

particular, they both pose and answer the question, Why 

these patterns but not others? 

The lesser message is that mathematics can illuminate 

many aspects of nature that we do not normally think of as 
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being mathematical. This is a message that goes back to the 

Scottish zoologist D' Arcy Thompson, whose classic but mav

erick book On Growth and Form set out, in 1917, an enor

mous variety of more or less plausible evidence for the role of 

mathematics in the generation of biological form and behav

ior. In an age when most biologists seem to think that the only 

interesting thing about an animal is its DNA sequence, it is a 

message that needs to be repeated, loudly and often. 





CHAPTER 8 

DO DICE PLAY GOD! 

The intellectual legacy of Isaac Newton was a vision of the 

clockwork universe, set in motion at the instant of creation 

but thereafter running in prescribed grooves, like a well-oiled 

machine. It was an image of a totally deterministic world

one leaving no room for the operation of chance, one whose 

future was completely determined by its present. As the great 

mathematical astronomer Pierre-Simon de Laplace eloquently 

put it in 1812 in his Analytic Theory of Probabilities: 

An intellect which at any given moment knew all the forces that 

animate Nature and the mutual positions of the beings that com

prise it, if this intellect were vast enough to submit its data to 

analysis, could condense into a single formula the movement of 

the greatest bodies of the universe and that of the lightest atom: 

for such an intellect nothing could be uncertain, and the future 

just like the past would be present before its eyes. 

This same vision of a world whose future is totally pre

dictable lies behind one of the most memorable incidents in 

Douglas Adams's 1979 science-fiction novel The Hitchhiker's 

Guide to the Galaxy, in which the philosophers Majikthise and 

Vroomfondel instruct the supercomputer "Deep Thought" to 

calculate the answer to the Great Question of Life, the Uni-

107 
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verse, and Everything. Aficionados will recall that after five 

million years the computer answered, "Forty-two," at which 

point the philosophers realized that while the answer was 

clear and precise, the question had not been. Similarly, the 

fault in Laplace's vision lies. not in his answer-that the uni

verse is in principle predictable, which is an accurate state

ment of a particular mathematical feature of Newton's law of 

motion-but in his interpretation of that fact, which is a seri

ous misunderstanding based on asking the wrong question. 

By asking a more appropriate question, mathematicians and 

physicists have now come to understand that determinism 

and predictability are not synonymous. 

In our daily lives, we encounter innumerable cases where 

Laplacian determinism seems to be a highly inappropriate 

model. We walk safely down steps a thousand times, until 

one day we turn our ankle and break it. We go to a tennis 

match, and it is rained off by an unexpected thunderstorm. 

We place a bet on the favorite in a horse race, and it falls at 

the last fence when it is six lengths ahead of the field. It's not 

so much a universe in which-as Albert Einstein memorably 

refused to believe-God plays dice: it seems more a universe 

in which dice play God. 

Is our world deterministic, as Laplace claimed, or is it gov

erned by chance, as it so often seems to be? And if Laplace is 

really right, why does so much of our experience indicate that 

he is wrong? One of the most exciting new areas of mathemat

ics, nonlinear dynamics-popularly known as chaos theory

claims to have many of the answers. Whether or not it does, it 

is certainly creating a revolution in the way we think about 

order and disorder, law and chance, predictability and 

randomness. 
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According to modern physics, nature is ruled by chance 

on its smallest scales of space and time. For instance, whether 

a radioactive atom-of uranium, say-does or does not decay 

at any given instant is purely a matter of chance. There is no 

physical difference whatsoever between a uranium atom that 

is about to decay and one that is not about to decay. None. 

Absolutely none. 

There are at least two contexts in which to discuss these 

issues: quantum mechanics and classical mechanics. Most of 

this chapter is about classical mechanics, but for a moment let 

us consider the quantum-mechanical context. It was this view 

of quantum indeterminacy that prompted Einstein's famous 

statement (in a letter to his colleague Max Born) that "you 

believe in a God who plays dice, and 1 in complete law and 

order." To my mind, there is something distinctly fishy about 

the orthodox physical view of quantum indeterminacy, and 1 

appear not to be alone, because, increasingly, many physicists 

are beginning to wonder whether Einstein was right all along 

and something is missing from conventional quantum 

mechanics-perhaps "hidden variables," whose values tell an 

atom when to decay. (I hasten to add that this is not the con

ventional view.) One of the best known of them, the Princeton 

physicist David Bohm, devised a modification of quantum 

mechanics that is fully deterministic but entirely consistent 

with all the puzzling phenomena that have been used to sup

port the conventional view of quantum indeterminacy. 

Bohm's ideas have problems of their own, in particular a kind 

of "action at a distance" that is no less disturbing than quan

tum indeterminacy. 

However, even if quantum mechanics is correct about 

indeterminacy on the smallest scales, on macroscopic scales 
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of space and time the universe obeys deterministic laws, This 

results from an effect called decoherence, which causes suffi

ciently large quantum systems to lose nearly all of their inde

terminacy and behave much more like Newtonian systems. In 

effect, this reinstates classical mechanics for most human

scale purposes. Horses, the weather, and Einstein's celebrated 

dice are not unpredictable because of quantum mechanics. 

On the contrary, they are unpredictable within a Newtonian 

model, too. This is perhaps not so surprising when it come to 

horses-living creatures have their own hidden variables, 

such as what kind of hay they had for breakfast. But it was 

definitely a surprise to those meteorologists who had been 

developing massive computer simulations of weather in the 

hope of predicting it for months ahead. And it is really rather 

startling when it comes to dice, even though humanity per

versely uses dice as one of its favorite symbols for chance. 

Dice are just cubes, and a tumbling cube should be no less 

predictable than an orbiting planet: after all, both objects obey 

the same laws of mechanical motion. They're different 

shapes, but equally regular and mathematical ones. 

To see how unpredictability can be reconciled with deter

minism, think about a much less ambitious system than the 

entire universe-namely, drops of water dripping from a tap. * 

This is a deterministic system: in principle, the flow of water 

into the apparatus is steady and uniform, and what happens 

to it when it emerges is totally prescribed by the laws of fluid 

motion. Yet a simple but effective experiment demonstrates 

that this evidently deterministic system can be made to 

behave unpredictably; and this leads us to some mathematical 

"In the United States; a faucet. 
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"lateral thinking," which explains why such a paradox is 

possible. 

If you turn on a tap very gently and wait a few seconds for 

the flow to settle down, you can usually produce a regular 

series of drops of water, falling at equally spaced times in a 

regular rhythm. It would be hard to find anything more pre

dictable than this. But if you slowly turn the tap to increase 

the flow, you can set it so that the sequence of drops falls in a 

very irregular manner, one that sounds random. It may take a 

little experimentation to succeed, and it helps if the tap turns 

smoothly. Don't turn it so far that the water falls in an unbro

ken stream; what you want is a medium-fast trickle. If you get 

it set just right, you can listen for many minutes without any 

obvious pattern becoming apparent. 

In 1978, a bunch of iconoclastic young graduate students 

at the University of California at Santa Cruz formed the 

Dynamical Systems Collective. When they began thinking 

about this water-drop system, they realized that it's not as 

random as it appears to be. They recorded the dripping noises 

with a microphone and analyzed the sequence of intervals 

between each drop and the next. What they found was short

term predictability. If I tell you the timing of three successive 

drops, then you can predict when the next drop will fall. For 

example, if the last three intervals between drops have been 

0.63 seconds, 1.17 seconds, and 0.44 seconds, then you can be 

sure that the next drop will fall after a further 0.82 seconds. 

(These numbers are for illustrative purposes only.) In fact, if 

you know the timing of the first three drops exactly, then you 

can predict the entire future of the system. 

So why is Laplace wrong? The point is that we can never 

measure the initial state of a system exactly. The most precise 
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measurements yet made in any physical system are correct to 

about ten or twelve decimal places. But Laplace's statement is 

correct only if we can make measurements to infinite preci

sion, infinitely many decimal places-and of course there's 

no way to do that. People knew about this problem of mea

surement error in Laplace's day, but they generally assumed 

that provided you made the initial measurements to, say, ten 

decimal places, then all subsequent prediction would also be 

accurate to ten decimal places. The error would not disap

pear, but neither would it grow. 

Unfortunately, it does grow, and this prevents us from 

stringing together a series of short-term predictions to get one 

that is valid in the long term. For example, suppose I know 

the timing of the first three water drops to an accuracy of ten 

decimal places. Then I can predict the timing of the next drop 

to nine decimal places, the drop after that to eight decimal 

places, and so on. At each step, the error grows by a factor of 

about ten, so I lose confidence in one further decimal place. 

Therefore, ten steps into the future, I really have no idea at all 

what the timing of the next drop will be. (Again, the precise 

figures will probably be different: it may take half a dozen 

drops to lose one decimal place in accuracy, but even then it 

takes only sixty drops until the same problem arises.) 

This amplification of error is the logical crack through 

which Laplace's perfect determinism disappears. Nothing 

short of total perfection of measurement will do. If we could 

measure the timing to a hundred decimal places, our predic

tions would fail a mere hundred drops into the future (or six 

hundred, using the more optimistic estimate). This phenome

non is called "sensitivity to initial conditions," or more infor

mally "the butterfly effect." (When a butterfly in Tokyo flaps 
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its wings, the result may be a hurricane in Florida a month 

later.) It is intimately associated with a high degree of irregu

larity of behavior. Anything truly regular is by definition 

fairly predictable. But sensitivity to initial conditions renders 

behavior unpredictable-hence irregular. For this reason, a 

system that displays sensitivity to initial conditions is said to 

be chaotic. Chaotic behavior obeys deterministic laws, but it 

is so irregular that to the untrained eye it looks pretty much 

random. Chaos is not just complicated, patternless behavior; 

it is far more subtle. Chaos is apparently complicated, appar

ently patternless behavior that actually has a simple, deter

ministic explanation. 

The discovery of chaos was made by many people, too 

numerous to list here. It came about because of the conjunc

tion of three separate developments. One was a change of sci

entific focus, away from simple patterns such as repetitive 

cycles, toward more complex kinds of behavior. The second 

was the computer, which made it possible to find approxi

mate solutions to dynamical equations easily and rapidly. 

The third was a new mathematical viewpoint on dynamics-a 

geometric rather than a numerical viewpoint. The first pro

vided motivation, the second provided technique, and the 

third provided understanding. 

The geometrization of dynamics began about a hundred 

years ago, when the French mathematician Henri Poincare-a 

maverick if ever there was one, but one so brilliant that his 

views became orthodoxies almost overnight-invented the 

concept of a phase space. This is an imaginary mathematical 

space that represents all possible motions of a given dynami

cal system. To pick a nonmechanical example, consider the 

population dynamics of a predator-prey ecological system. 
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The predators are pigs and the prey are those exotically pun

gent fungi, truffles. The variables upon which we focus atten

tion are the sizes of the two populations-the number of pigs 

(relative to some reference value such as one million) and the 

number of truffles (ditto). This choice effectively makes the 

variables continuous-that is, they take real-number values 

with decimal places, not just whole-number values. For 

example, if the reference number of pigs is one million, then a 

population of 17,439 pigs corresponds to the value 0.017439. 

Now, the natural growth of truffles depends on how many 

truffles there are and the rate at which pigs eat them: the 

growth of the pig population depends on how many pigs 

there are and how many truffles they eat. So the rate of 

change of each variable depends on both variables, an obser

vation that can be turned into a system of differential equa

tions for the population dynamics. I won't write them down, 

because it's not the equations that matter here: it's what you 

do with them. 

These equations determine-in principle-how any initial 

population values will change over time. For example, if we 

start with 17,439 pigs and 788,444 truffles, then you plug in 

the initial values 0.017439 for the pig variable and 0.788444 

for the truffle variable, and the equations implicitly tell you 

how those numbers will change. The difficulty is to make the 

implicit become explicit: to solve the equations. But in what 

sense? The natural reflex of a classical mathematician would 

be to look for a formula telling us exactly what the pig popu

lation and the truffle population will be at any instant. Unfor

tunately, such "explicit solutions" are so rare that it is 

scarcely worth the effort of looking for them unless the equa

tions have a very special and limited form. An alternative is 
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to find approximate solutions on a computer; but that tells us 

only what will happen for those particular initial values, and 

most often we want to know what will happen for a lot of dif

ferent initial values. 

Poincare's idea is to draw a picture that shows what hap

pens for all initial values. The state of the system-the sizes of 

the two populations at some instant of time-can be repre

sented as a point in the plane, using the old trick of coordi

nates. For example, we might represent the pig population by 

the horizontal coordinate and the truffle population by the 

vertical one. The initial state described above corresponds to 

the point with horizontal coordinate 0.017439 and vertical 

coordinate 0.788444. Now let time flow. The two coordinates 

change from one instant to the next, according to the rule 

expressed by the differential equation, so the corresponding 

point moves. A moving point traces out a curve; and that 

curve is a visual representation of the future behavior of the 

entire system. In fact, by looking at the curve, you can "see" 

important features of the dynamics without worrying about 

the actual numerical values ofthe coordinates. 

For example, if the curve closes up into a loop, then the 

two populations are following a periodic cycle, repeating the 

same values over and over again-just as a car on a racetrack 

keeps going past the same spectator every lap. If the curve 

homes in toward some particular point and stops, then the 

populations settle down to a steady state, in which neither 

changes-like a car that runs out of fuel. By a fortunate coin

cidence, cycles and steady states are of considerable ecologi

cal significance-in particular, they set both upper and lower 

limits to populations sizes. So the features that the eye detects 

most easily are precisely the ones that really matter. More-
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over, a lot of irrelevant detail can be ignored: for example, we 

can see that there is a closed loop without having to work out 

its precise shape (which represents the combined "wave

forms" of the two population cycles). 

What happens if we try a different pair of initial values? 

We get a second curve. Each pair of initial values defines a 

new curve; and we can capture all possible behaviors of the 

system, for all initial values, by drawing a complete set of 

such curves. This set of curves resembles the flow lines of an 

imaginary mathematical fluid, swirling around in the plane. 

We call the plane the phase space of the system, and the set of 

swirling curves is the system's phase portrait. Instead of the 

symbol-based idea of a differential equation with various ini

tial conditions, we have a geometric, visual scheme of points 

flowing through pig/truffle space. This differs from an ordi

nary plane only in that many of its points are potential rather 

than actual: their coordinates correspond to numbers of pigs 

and truffles that could occur under appropriate initial condi

tions, but may not occur in a particular case. So as well as the 

mental shift from symbols to geometry, there is a philosophi

cal shift from the actual to the potential. 

The same kind of geometric picture can be imagined for 

any dynamical system. There is a phase space, whose coordi

nates are the values of all the variables; and there is a phase 

portrait, a system of swirling curves that represents all possi

ble behaviors starting from all possible initial conditions, and 

that are prescribed by the differential equations. This idea 

constitutes a major advance, because instead of worrying 

about the precise numerical details of solutions to the equa

tions, we can focus upon the broad sweep of the phase por

trait, and bring humanity's greatest asset, its amazing image-
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processing abilities, to bear. The image of a phase space as a 

way of organizing the total range of potential behaviors, from 

among which nature selects the behavior actually observed, 

has become very widespread in science. 

The upshot of Poincare's gre'at innovation is that dynamics 

can be visualized in terms of geometric shapes called attrac

tors. If you start a dynamical system from some initial point 

and watch what it does in the long run, you often find that it 

ends up wandering around on some well-defined shape in 

phase space. For example, the curve may spiral in toward a 

closed loop and then go around and around the loop forever. 

Moreover, different choices of initial conditions may lead to 

the same final shape. If so, that shape is known as an attrac

tor. The long-term dynamics of a system is governed by its 

attractors, and the shape of the attractor determines what type 

of dynamics occurs. 

For example, a system that settles down to a steady state 

has an attractor that is just a point. A system that settles down 

to repeating the same behavior periodically has an attractor 

that is a closed loop. That is, closed loop attractors corre

spond to oscillators. Recall the description of a vibrating vio

lin string from chapter 5; the string undergoes a sequence of 

motions that eventually puts it back where it started, ready to 

repeat the sequence over and over forever. I'm not suggesting 

that the violin string moves in a physical loop. But my 

description of it is a closed loop in a metaphorical sense: the 

motion takes a round trip through the dynamic landscape of 

phase space. 

Chaos has its own rather weird geometry: it is associated 

with curious fractal shapes called strange attractors. The butter

fly effect implies that the detailed motion on a strange attractor 
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can't be determined in advance. But this doesn't alter the fact 

that it is an attractor. Think of releasing a Ping-Pong ball into a 

stormy sea. Whether you drop it from the air or release it from 

underwater, it moves toward the surface. Once on the surface, it 

follows a very complicated path in the surging waves, but how

ever complex that path is, the ball stays on-or at least very 

near-the surface. In this image, the surface of the sea is an 

attractor. So, chaos notwithstanding, no matter what the starting 

point may be, the system will end up very close to its attractor. 

Chaos is well established as a mathematical phenomenon, 

but how can we detect it in the real world? We must perform 

experiments-and there is a problem. The traditional role of 

experiments in science is to test theoretical predictions, but if 

the butterfly effect is in operation-as it is for any chaotic sys

tem-how can we hope to test a prediction? Isn't chaos inher

ently untestable, and therefore unscientific? 

The answer is a resounding no, because the word "predic

tion" has two meanings. One is "foretelling the future," and the 

butterfly effect prevents this when chaos is present. But the 

other is "describing in advance what the outcome of an experi

ment will be." Think about tossing a coin a hundred times. In 

order to predict-in the fortune-teller's sense-what happens, 

you must list in advance the result of each of the tosses. But 

you can make scientific predictions, such as "roughly half the 

coins will show heads," without foretelling the future in 

detail-even when, as here, the system is random. Nobody sug

gests that statistics is unscientific because it deals with unpre

dictable events, and therefore chaos should be treated in the 

same manner. You can make all sorts of predictions about a 

chaotic system; in fact, you can make enough predictions to 

distinguish deterministic chaos from true randomness. One 
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thing that you can often predict is the shape of the attractor, 

which is not altered by the butterfly effect. All the butterfly 

effect does is to make the system follow different paths on the 

same attractor. In consequence, the general shape of the attrac

tor can often be inferred from experimental observations. 

The discovery of chaos has revealed a fundamental misun

derstanding in our views of the relation between rules and the 

behavior they produce-between cause and effect. We used to 

think that deterministic causes must produce regular effects, 

but now we see that they can produce highly irregular effects 

that can easily be mistaken for randomness. We used to think 

that simple causes must produce simple effects (implying that 

complex effects must have complex causes), but now we 

know that simple causes can produce complex effects. We 

realize that knowing the rules is not the same as being able to 

predict future behavior. 

How does this discrepancy between cause and effect arise? 

Why do the same rules sometimes produce obvious patterns 

and sometimes produce chaos? The answer is to be found in 

every kitchen, in the employment of that simple mechanical 

device, an eggbeater. The motion of the two beaters is simple 

and predictable, just as Laplace would have expected: each 

beater rotates steadily. The motion of the sugar and the egg 

white in the bowl, however, is far more complex. The two 

ingredients get mixed up-that's what eggbeaters are for. But 

the two rotary beaters don't get mixed up-you don't have to 

disentangle them from each other when you've finished. Why 

is the motion of the incipient meringue so different from that 

of the beaters? Mixing is a far more complicated, dynamic 

process than we tend to think. Imagine trying to predict 

where a particular grain of sugar will end up! As the mixture 
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passes between the pair of beaters, it is pulled apart, to left 

and right, and two sugar grains that start very close together 

soon get a long way apart and follow independent paths. This 

is, in fact, the butterfly effect in action-tiny changes in initial 

conditions have big effects. So mixing is a chaotic process. 

Conversely, every chaotic process involves a kind of math

ematical mixing in Poincare's imaginary phase space. This is 

why tides are predictable but weather is not. Both involve the 

same kind of mathematics, but the dynamics of tides does not 

get phase space mixed up, whereas that of the weather does. 

It's not what you do, it's the way that you do it. 

Chaos is overturning our comfortable assumptions about 

how the world works. It tells us that the universe is far 

stranger than we think. It casts doubt on many traditional 

methods of science: merely knowing the laws of nature is no 

longer enough. On the other hand, it tells us that some things 

that we thought were just random may actually be conse

quences of simple laws. Nature's chaos is bound by rules. In 

the past, science tended to ignore events or phenomena that 

seemed random, on the grounds that since they had no obvi

ous patterns they could not be governed by simple laws. Not 

so. There are simple laws right under our noses-laws govern

ing disease epidemics, or heart attacks, or plagues of locusts. 

If we learn those laws, we may be able to prevent the disasters 

that follow in their wake. 

Already chaos has shown us new laws, even new types of 

laws. Chaos contains its own brand of new universal patterns. 

One of the first to be discovered occurs in the dripping tap. 

Remember that a tap can drip rhythmically or chaotically, 

depending on the speed of the flow. Actually, both the regu

larly dripping tap and the "random" one are following slightly 
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different variants of the same mathematical prescription. But as 

the rate at which water passes through the tap increases, the 

type of dynamics changes. The attractor in phase space that 

represents the dynamics keeps changing-and it changes in a 

predictable but highly complex manner. 

Start with a regularly dripping tap: a repetitive drip-drip

drip-drip rhythm, each drop just like the previous one. Then 

tum the tap slightly, so that the drips come slightly faster. 

Now the rhythm goes drip-DRIP-drip-DRIP, and repeats every 

two drops. Not only the size of the drop, which governs how 

loud the drip sounds, but also the timing changes slightly 

from one drop to the next. 

If you allow the water to flow slightly faster still, you get a 

four-drop rhythm: drip-DRIP-drip-DRIP. A little faster still, 

and you produce an eight-drop rhythm: drip-DRIP-drip-DRIP

drip-DRIP-drip-DRIP. The length of the repetitive sequence 

of drops keeps on doubling. In a mathematical model, this 

process continues indefinitely, with rhythmic groups of 16, 

32, 64 drops, and so on. But it takes tinier and tinier changes 

to the flow rate to produce each successive doubling of the 

period; and there is a flow rate by which the size of the group 

has doubled infinitely often. At this point, no sequence of 

drops repeats exactly the same pattern. This is chaos. 

We can express what is happening in Poincare's geometric 

language. The attractor for the tap begins as a closed loop, 

representing a periodic cycle. Think of the loop as an elastic 

band wrapped around your finger. As the flow rate increases, 

this loop splits into two nearby loops, like an elastic band 

wound twice around your finger. This band is twice as long as 

the original, which is why the period is twice as long. Then in 

exactly the same way, this already-doubled loop doubles 
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again, all the way along its length, to create the period-four 

cycle, and so on. After infinitely many doublings, your finger 

is decorated with elastic spaghetti, a chaotic attractor. 

This scenario for the creation of chaos is called a period

doubling cascade. In 1975, the physicist Mitchell Feigenbaum 

discovered that a particular number, which can be measured 

in experiments, is associated with every period-doubling cas

cade. The number is roughly 4.669, and it ranks alongside 1t 

(pi) as one of those curious numbers that seem to have extra

ordinary significance in both mathematics and its relation to 

the natural world. Feigenbaum's number has a symbol, too: 

the Greek letter () (delta). The number 1t tells us how the cir

cumference of a circle relates to its diameter. Analogously, 

Feigenbaum's number () tells us how the period of the drips 

relates to the rate of flow of the water. To be precise, the extra 

amount by which you need to turn on the tap decreases by a 

factor of 4.669 at each doubling of the period. 

The number 1t is a quantitative signature for anything 

involving circles. In the same way, the Feigenbaum number () 

is a quantitative signature for any period-doubling cascade, 

no matter how it is produced or how it is realized experimen

tally. That very same number shows up in experiments on liq

uid helium, water, electronic circuits, pendulums, magnets, 

and vibrating train wheels. It is a new universal pattern in 

nature, one that we can see only through the eyes of chaos; a 

quantitative pattern, a number, emerges from a qualitative 

phenomenon. One of nature's numbers, indeed. The Feigen

baum number has opened the door to a new mathematical 

world, one we have only just begun to explore. 

The precise pattern found by Feigenbaum, and other pat

terns like it, is a matter of fine detail. The basic point is that 



DO DICE PLAY GOD? 111 

even when the consequences of natural laws seem to be pat

ternless, the laws are still there and so are the patterns. Chaos 

is not random: it is apparently random behavior resulting 

from precise rules. Chaos is a cryptic form of order. 

Science has traditionally valued order, but we are begin

ning to appreciate the fact that chaos can offer science distinct 

advantages. Chaos makes it much easier to respond quickly to 

an outside stimulus. Think of tennis players waiting to 

receive a serve. Do they stand still? Do they move regularly 

from side to side? Of course not. They dance erratically from 

one foot to the other. In part, they are trying to confuse their 

opponents, but they are also getting ready to respond to any 

serve sent their way. In order to be able to move quickly in 

any particular direction, they make rapid movements in many 

different directions. A chaotic system can react to outside 

events much more quickly, and with much less effort, than a 

non chaotic one. This is important for engineering control 

problems. For example, we now know that some kinds of tur

bulence result from chaos-that's what makes turbulence look 

random. It may prove possible to make the airflow past an air

craft's skin much less turbulent, and hence less resistant to 

motion, by setting up control mechanisms that respond 

extremely rapidly to cancel out any small regions of incipient 

turbulence. Living creatures, too, must behave chaotically in 

order to respond rapidly to a changing environment. 

This idea has been turned into an extremely useful practi

cal technique by a group of mathematicians and physicists, 

among them William Ditto, Alan Garfinkel, and Jim Yorke: 

they call it chaotic control. Basically, the idea is to make the 

butterfly effect work for you. The fact that small changes in 

initial conditions create large changes in subsequent behavior 



124 NATURE'S NUMBERS 

can be an advantage; all you have to do is ensure that you get 

the large changes you want. Our understanding of how 

chaotic dynamics works makes it possible to devise control 

strategies that do precisely this. The method has had several 

successes. Space satellites use a fuel called hydrazine to make 

course corrections. One of the earliest successes of chaotic 

control was to divert a dead satellite from its orbit and send it 

out for an encounter with an asteroid, using only the tiny 

amount of hydrazine left on board. NASA arranged for the 

satellite to swing around the Moon five times, nudging it 

slightly each time with a tiny shot of hydrazine. Several such 

encounters were achieved, in an operation that successfully 

exploited the occurrence of chaos in the three-body problem 

(here, Earth/Moon/satellite) and the associated butterfly 

effect. 

The same mathematical idea has been used to control a 

magnetic ribbon in a turbulent fluid-a prototype for control

ling turbulent flow past a submarine or an aircraft. Chaotic 

control has been used to make erratically beating hearts return 

to a regular rhythm, presaging invention of the intelligent 

pacemaker. Very recently, it has been used both to set up and 

to prevent rhythmic waves of electrical activity in brain tissue, 

opening up the possibility of preventing epileptic attacks. 

Chaos is a growth industry. Every week sees new discover

ies about the underlying mathematics of chaos, new applica

tions of chaos to our understanding of the natural world, or 

new technological uses of chaos-including the chaotic dish

washer, a Japanese invention that uses two rotating arms, 

spinning chaotically, to get dishes cleaner using less energy; 

and a British machine that uses chaos-theoretic data analysis 

to improve quality control in spring manufacture. 
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Much, however, remains to be done. Perhaps the ultimate 

unsolved problem of chaos is the strange world of the quan

tum, where Lady Luck rules. Radioactive atoms decay "at ran

dom"; their only regularities are statistical. A large quantity of 

radioactive atoms has a well-defined half-life-a period of 

time during which half the atoms will decay. But we can't 

predict which half. Albert Einstein's protest, mentioned ear

lier, was aimed at just this question. Is there really no differ

ence at all between a radioactive atom that is not going to 

decay, and one that's just about to? Then how does the atom 

know what to do? 

Might the apparent randomness of quantum mechanics be 

fraudulent? Is it really deterministic chaos? Think of an atom 

as some kind of vibrating droplet of cosmic fluid. Radioactive 

atoms vibrate very energetically, and every so often a smaller 

drop can split off-decay. The vibrations are so rapid that we 

can't measure them in detail: we can only measure averaged 

quantities, such as energy levels. Now, classical mechanics 

tells us that a drop of real fluid can vibrate chaotically. When 

it does so, its motion is deterministic but unpredictable. Occa

sionally, "at random," the vibrations conspire to split off a 

tiny droplet. The butterfly effect makes it impossible to say in 

advance just when the drop will split; but that event has pre

cise statistical features, including a well defined half-life. 

Could the apparently random decay of radioactive atoms 

be something similar, but on a microcosmic scale? After all, 

why are there any statistical regularities at all? Are they traces 

of an underlying determinism? Where else can statistical reg

ularities come from? Unfortunately, nobody has yet made this 

seductive idea work-though it's similar in spirit to the fash

ionable theory of superstrings, in which a subatomic particle 
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is a kind of hyped-up vibrating multidimensional loop. The 

main similar feature here is that both the vibrating loop and 

the vibrating drop introduce new "internal variables" into the 

physical picture. A significant difference is the way these two 

approaches handle quantum indeterminacy. Superstring the

ory, like conventional quantum mechanics, sees this indeter

minacy as being genuinely random. In a system like the drop, 

however, the apparent indeterminacy is actually generated by 

a deterministic, but chaotic, dynamic. The trick-if only we 

knew how to do it-would be to invent some kind of structure 

that retains the successful features of superstring theory, 

while making some of the internal variables behave chaoti

cally. It would be an appealing way to render the Deity's dice 

deterministic, and keep the shade of Einstein happy. 



CHAPTER 9 

DROPS, DYNAMICS, AND DAISIES 

Chaos teaches us that systems obeying simple rules can 

behave in surprisingly complicated ways. There are important 

lessons here for everybody-managers who imagine that 

tightly controlled companies will automatically run 

smoothly, politicians who think that legislating against a 

problem will automatically eliminate it, and scientists who 

imagine that once they have modeled a system their work is 

complete. But the world cannot be totally chaotic, otherwise 

we would not be able to survive in it. In fact, one of the rea

sons that chaos was not discovered sooner is that in many 

ways our world is simple. That simplicity tends to disappear 

when we look below the surface, but on the surface it is still 

there. Our use of language to describe our world rests upon 

the existence of underlying simplicities. For example, the 

statement "foxes chase rabbits" makes sense only because it 

captures a general pattern of animal interaction. Foxes do 

chase rabbits, in the sense that if a hungry fox sees a rabbit 

then it is likely to run after it. 

However, if you start to look at the details, they rapidly 

become so complicated that the simplicity is lost. For exam

ple, in order to perform this simple act, the fox must recog-

117 
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nize the rabbit as a rabbit. Then it must put its legs into gear 

to run after it. In order to comprehend these actions, we must 

understand vision, pattern recognition in the brain, and loco

motion. In chapter 7, we investigated the third item, locomo

tion, and there we found the intricacies of physiology and 

neurology-bones, muscles, nerves, and brains. The action of 

muscles in turn depends on cell biology and chemistry; chem

istry depends on quantum mechanics; and quantum mechan

ics may, in turn, depend on the much-sought Theory of Every

thing, in which all of the laws of physics come together in a 

single unified whole. If instead of locomotion we pursue the 

path opened by vision or pattern recognition, we again see the 

same kind of ever-branching complexity. 

The task looks hopeless-except that the simplicities we 

start from exist, so either nature uses this enormously com

plex network of cause and effect or it sets things up so that 

most of the complexity doesn't matter. Until recently, the nat

ural paths of investigation in science led deeper and deeper 

into the tree of complexity-what Jack Cohen and I have 

called the "reductionist nightmare."* We have learned a lot 

about nature by going that route-especially regarding how to 

manipulate it to our own ends. But we have lost sight of the 

big simplicities because we no longer see them as being sim

ple at all. Recently, a radically different approach has been 

advocated, under the name complexity theory. Its central 

theme is that large-scale simplicities emerge from the com

plex interactions of large numbers of components. 

In this final chapter, I want to show you three examples of 

simplicity emerging from complexity. They are not taken 

'In The Collapse of Chaos. 
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from the writings of the complexity theorists; instead I have 

chosen them from the mainstream of modern applied mathe

matics, the theory of dynamical systems. There are two rea

sons why I have done this. One is that I want to show that the 

central philosophy of complexity theory is popping up all 

over science, independently of any explicit movement to pro

mote it. There is a quiet revolution simmering, and you can 

tell because the bubbles are starting to break the surface. The 

other is that each piece of work solves a long-standing puzzle 

about mathematical patterns in the natural world-and in so 

doing opens our eyes to features of nature that we would not 

otherwise have appreciated. The three topics are the shape of 

water drops, the dynamic behavior of animal populations, 

and the strange patterns in plant-petal numerology, whose 

solution I promised in the opening chapter. 

To begin, let us return to the question of water dripping 

slowly from a tap. Such a simple, everyday phenomenon-yet 

it has already taught us about chaos. Now it will teach us 

something about complexity. This time we do not focus on 

the timing of successive drops. Instead, we look at what shape 

the drop takes up as it detaches from the end of the tap. 

Well, it's obvious, isn't it? It must be the classic "teardrop" 

shape, rather like a tadpole; round at the head and curving 

away to a sharp tail. After all, that's why we call such a shape 

a teardrop. 

But it's not obvious. In fact, it's not true. 

When I was first told of this problem, my main surprise 

was that the answer had not been found long ago. Literally 

miles of library shelves are filled with scientific studies of 

fluid flow; surely somebody took the trouble to look at the 

shape of a drop of water? Yet the early literature contains only 
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one correct drawing, made over a century ago by the physicist 

Lord Rayleigh, and is so tiny that hardly anybody noticed it. 

In 1990, the mathematician Howell Peregrine and colleagues 

at Bristol University photographed the process and discov

ered that it is far more complicated-but also far more inter

esting-than anybody would ever imagine. 

The formation of the detached drop begins with a bulging 

droplet hanging from a surface, the end of the tap. It develops 

a waist, which narrows, and the lower part of the droplet 

appears to be heading toward the classic teardrop shape. But 

instead of pinching off to form a short, sharp tail, the waist 

lengthens into a long thin cylindrical thread with an almost 

FIGURE 4. 

The shapes taken by a falling drop of water as it becomes detached. 
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spherical drop hanging from its end. Then the thread starts to 

narrow, right at the point where it meets the sphere, until it 

develops a sharp point. At this stage, the general shape is like 

a knitting needle that is just touching an orange. Then the 

orange falls away from the needle, pulsating slightly as it 

falls. But that's only half the story. Now the sharp end of the 

needle begins to round off, and tiny waves travel back up the 

needle toward its root, making it look like a string of pearls 

that become tinier and tinier. Finally, the hanging thread of 

water narrows to a sharp point at the top end, and it, too, 

detaches. As it falls, its top end rounds off and a complicated 

series of waves travels along it. 

I hope you find this as astonishing as I do. I had never 

imagined that falling drops of water could be so busy. 

These observations make it clear why nobody had previ

ously studied the problem in any great mathematical detail. 

It's too hard. When the drop detaches, there is a singularity in 

the problem-a place where the mathematics becomes very 

nasty. The singularity is the tip of the "needle." But why is 

there a singularity at all? Why does the drop detach in such a 

complex manner? In 1994, J. Eggers and T. F. Dupont showed 

that the scenario is a consequence of the equations of fluid 

motion. They simulated those equations on a computer and 

reproduced Peregrine's scenario. 

It was a brilliant piece of work. But in some respects it 

does not provide a complete answer to my question. It is reas

suring to learn that the equations of fluid flow do predict the 

correct scenario, but that in itself doesn't help me understand 

why that scenario happens. There is a big difference between 

calculating nature's numbers and getting your brain around 

the answer-as Majikthise and Vroomfondel discovered when 

the answer was "Forty-two." 
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Further insight into the mechanism of detaching drops has 

come about through the work of X. D. Shi, Michael Brenner, 

and Sidney Nagel, of the University of Chicago. The main 

character in the story was already present in Peregrine's work: 

it is a particular kind of solution to the equations of fluid flow 

called a "similarity solution." Such a solution has a certain 

kind of symmetry that makes it mathematically tractable: it 

repeats its structure on a smaller scale after a short interval of 

time. Shi's group took this idea further, asking how the shape 

of the detaching drop depends on the fluid's viscosity. They 

performed experiments using mixtures of water and glycerol 

to get different viscosities. They also carried out computer 

simulations and developed the theoretical approach via simi

larity solutions. What they discovered is that for more viscous 

fluids, a second narrowing of the thread occurs before the sin

gularity forms and the drop detaches. You get something more 

like an orange suspended by a length of string from the tip of 

a knitting needle. At higher viscosities still, there is a third 

narrowing-an orange suspended by a length of cotton from a 

length of string from the tip of a knitting needle. And as the 

viscosity goes up, so the number of successive narrowings 

increases without limit-at least, if we ignore the limit 

imposed by the atomic structure of matter. 

Amazing! 

The second example is about population dynamics. The 

use of that phrase reflects a long tradition of mathematical 

modeling in which the changes in populations of interacting 

creatures are represented by differential equations. My 

pig/truffle system was an example. However, there is a lack of 

biological realism in such models-and not just as regards my 

choice of creatures. In the real world, the mechanism that 

governs population sizes is not a "law of population," akin to 



DROPS, DYNAMICS, AND DAISIES III 

Newton's law of motion, There are all kinds of other effects: 

for example, random ones (can the pig dig out the truffle or is 

there a rock in the way?) or types of variability not included 

in the equations (some pigs habitually produce more piglets 

than others), 

In 1994, Jacquie McGlade, David Rand, and Howard Wil

son, of Warwick University, carried out a fascinating study 

that bears on the relation between more biologically realistic 

models and the traditional equations. It follows a strategy 

common in complexity theory: set up a computer simulation 

in which large numbers of "agents" interact according to 

biologically plausible (though much simplified) rules, and 

try to extract large-scale patterns from the results of that 

simulation. In this case, the simulation was carried out by 

means of a "cellular automaton," which you can think of as 

a kind of mathematical computer game. McGlade, Rand, and 

Wilson, lacking my bias in favor of pigs, considered the 

more traditional foxes and rabbits. The computer screen is 

divided into a grid of squares, and each square is assigned a 

color-say, red for a fox, gray for a rabbit, green for grass, 

black for bare rock. Then a system of rules is set up to model 

the main biological influences at work. Examples of such 

rules might be: 

• If a rabbit is next to grass, it moves to the position of 

the grass and eats it. 

• If a fox is next to a rabbit, it moves to the position of 

the rabbit and eats it. 

• At each stage of the game, a rabbit breeds new rabbits 

with some chosen probability. 

• A fox that has not eaten for a certain number of moves 

will die. 
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McGlade's group played a more complicated game than this, 

but you get the idea. Each move in the game takes the current 

configuration of rabbits, foxes, grass, and rock, and applies 

the rules to generate the next configuration-tossing com

puter "dice" when random choices are required. The process 

continues for several thousand moves, an "artifical ecology" 

that plays out the game of life on a computer screen. This arti

ficial ecology resembles a dynamical system, in that it repeat

edly applies the same bunch of rules; but it also includes ran

dom effects, which places the model in a different 

mathematical category altogether: that of stochastic cellular 

automata-computer games with chance. 

Precisely because the ecology is an artificial one, you can 

perform experiments that are impossible, or too expensive, to 

perform in a real ecology. You can, for example, watch how 

the rabbit population in a given region changes over time, and 

get the exact numbers. This is where McGlade's group made a 

dramatic and surprising discovery. They realized that if you 

look at too tiny a region, what you see is largely random. For 

example, what happens on a single square looks extremely 

complicated. On the other hand, if you look at too large a 

region, all you see is the statistics of the population, averaged 

out. On intermediate scales, though, you may see something 

less dull. So they developed a technique for finding the size 

of region that would provide the largest amount of interesting 

information. They then observed a region of that size and 

recorded the changing rabbit population. Using methods 

developed in chaos theory, they asked whether that series of 

numbers was deterministic or random, and if deterministic, 

what its attractor looked like. This may seem a strange thing 

to do, inasmuch as we know that the rules for the simulation 

build in a great deal of randomness, but they did it anyway. 
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What they found was startling. Some 94 percent of the 

dynamics of the rabbit population on this intermediate scale 

can be accounted for by deterministic motion on a chaotic 

attractor in a four-dimensional phase space. In short, a differ

ential equation with only four variables captures the impor

tant features of the dynamics of the rabbit population with 

only a 6-percent error-despite the far greater complexities of 

the computer-game model. This discovery implies that mod

els with small numbers of variables may be more "realistic" 

than many biologists have hitherto assumed. Its deeper impli

cation is that simple large-scale features can and do emerge 

from the fine structure of complex ecological games. 

My third and final example of a mathematical regularity of 

nature that emerges from complexity rather than having been 

"built in with the rules" is the number of petals of flowers. I 

mentioned in chapter 1 that the majority of plants have a 

number of petals taken from the series 3, 5, 8, 13, 21, 34, 55, 

89. The view of conventional biologists is that the flower's 

genes specify all such information, and that's really all there 

is to it. However, just because living organisms have compli

cated DNA sequences that determine which proteins they are 

made of, and so on, it doesn't follow that genes determine 

everything. And even if they do, they may do so only indi

rectly. For example, genes tell plants how to make chloro

phyll, but they don't tell the plants what color the chlorophyll 

has to be. If it's chlorophyll, it's green-there's no choice. So 

some features of the morphology of living creatures are 

genetic in origin and some are a consequence of physics, 

chemistry, and the dynamics of growth. One way to tell the 

difference is that genetic influences have enormous flexibil

ity, but physics, chemistry, and dynamics produce mathemat

ical regularities. 
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The numbers that arise in plants-not just for petals but 

for all sorts of other features-display mathematical regulari

ties, They form the beginning of the so-called Fibonacci 

series, in which each number is the sum of the two that pre

cede it. Petals aren't the only places you find Fibonacci num

bers, either. If you look at a giant sunflower, you find a 

remarkable pattern of florets-tiny flowers that eventually 

become seeds-in its head. The florets are arranged in two 

intersecting families of spirals, one winding clockwise, the 

other counterclockwise. In some species the number of clock

wise spirals is thirty-four, and the number of counterclock

wise spirals is fifty-five. Both are Fibonacci numbers, occur

ring consecutively in the series. The precise numbers depend 

on the species of sunflower, but you often get 34 and 55, or 55 

and 89, or even 89 and 144, the next Fibonacci number still. 

Pineapples have eight rows of scales-the diamond-shaped 

markings-sloping to the left, and thirteen sloping to the 

right. 

Leonardo Fibonacci, in about 1200, invented his series in 

a problem about the growth of a population of rabbits. It 

wasn't as realistic a model of rabbit-population dynamics as 

the "game of life" model I've just discussed, but it was a very 

interesting piece of mathematics nevertheless, because it was 

the first model of its kind and because mathematicians find 

Fibonacci numbers fascinating and beautiful in their own 

right. The key question for this chapter is this: If genetics can 

choose to give a flower any number of petals it likes, or a pine 

cone any number of scales that it likes, why do we observe 

such a preponderance of Fibonacci numbers? 

The answer, presumably, has to be that the numbers arise 

through some mechanism that is more mathematical than 
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arbitrary genetic instructions. The most likely candidate is 

some kind of dynamic constraint on plant development, 

which naturally leads to Fibonacci numbers. Of course, 

appearances may be deceptive, it could be all in the genes. 

But if so, I'd like to know how the Fibonacci numbers got 

turned into DNA codes, and why it was those numbers. 

Maybe evolution started with the mathematical patterns that 

occurred naturally, and fine-tuned them by natural selection. 

I suspect a lot of that has happened-tigers' stripes, butter

flies' wings. That would explain why geneticists are con

vinced the patterns are genetic and mathematicians keep 

insisting they are mathematical. 

The arrangement of leaves, petals, and the like in plants 

has a huge and distinguished literature. But early approaches 

are purely descriptive-they don't explain how the numbers 

relate to plant growth, they just sort out the geometry of the 

arrangements. The most dramatic insight yet comes from 

some very recent work of the French mathematical physicists 

Stt'iphane Douady and Yves Couder. They devised a theory of 

the dynamics of plant growth and used computer models and 

laboratory experiments to show that it accounts for the 

Fibonacci pattern. 

The basic idea is an old one. If you look at the tip of the 

shoot of a growing plant, you can detect the bits and pieces 

from which all the main features of the plant-leaves, petals, 

sepals, florets, or whatever-develop. At the center of the tip 

is a circular region of tissue with no special features, called 

the apex. Around the apex, one by one, tiny lumps form, 

called primordia. Each primordium migrates away from the 

apex-or, more accurately, the apex grows away from the 

lump-and eventually the lump develops into a leaf, petal, or 
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the like. Moreover, the general arrangement of those features 

is laid down right at the start, as the primordia form. So basi

cally all you have to do is explain why you see spiral shapes 

and Fibonacci numbers in the primordia. 

The first step is to realize that the spirals most apparent to 

the eye are not fundamental. The most important spiral is 

formed by considering the primordia in their order of appear

ance. Primordia that appear earlier migrate farther, so you can 

deduce the order of appearance from the distance away from 

the apex. What you find is that successive primordia are 

spaced rather sparsely along a tightly wound spiral, called the 

generative spiral. The human eye picks out the Fibonacci spi

rals because they are formed from primordia that appear near 

each other in space; but it is the sequence in time that really 

matters. 

The essential quantitative feature is the angle between suc

cessive primordia. Imagine drawing lines from the centers of 

successive primordia to the center of the apex and measuring 

the angle between them. Successive angles are pretty much 

equal; their common value is called the divergence angle. In 

other words, the primordia are equally spaced-in an angular 

sense-along the generative spiral. Moreover, the divergence 

angle is usually very close to 137.5°, a fact first emphasized in 

1837 by the crystallographer Auguste Bravais and his brother 

Louis. To see why that number is significant, take two consec

utive numbers in the Fibonacci series: for example, 34 and 55. 

Now form the corresponding fraction 34/55 and multiply by 

360°, to get 222.5°. Since this is more than 180°, we should 

measure it in the opposite direction round the circle-or, 

equivalently, subtract it from 360°. The result is 137.5°, the 

value observed by the Bravais brothers. 
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The ratio of consecutive Fibonacci numbers gets closer 

and closer to the number 0.618034. For instance, 34/55 = 

0.6182 which is already quite close. The limiting value is 

exactly (vf5-1)/2, the so-called golden number, often denoted 

by the Greek letter phi (<1». Nature has left a clue for mathe

matical detectives: the angle between successive primordia is 

the "golden angle" of 360(1-<1»° = 137.5°. In 1907, G. Van Iter

son followed up this clue and worked out what happens 

when you plot successive points on a tightly wound spiral 

separated by angles of 137.5°. Because of the way neighboring 

points align, the human eye picks out two families of inter

penetrating spirals-one winding clockwise and the other 

counterclockwise. And because of the relation between 

Fibonacci numbers and the golden number, the numbers of 

spirals in the two families are consecutive Fibonacci num

bers. Which Fibonacci numbers depends on the tightness of 

the spiral. How does that explain the numbers of petals? Basi

cally, you get one petal at the outer edge of each spiral in just 

one of the families. 

At any rate, it all boils down to explaining why successive 

primordia are separated by the golden angle: then everything 

else follows. 

Douady and Couder found a dynamic explanation for the 

golden angle. They built their ideas upon an important insight 

of H. Vogel, dating from 1979. His theory is again a descrip

tive one-it concentrates on the geometry of the arrangement 

rather than on the dynamics that caused it. He performed 

numerical experiments which strongly suggested that if suc

cessive primordia are placed along the generative spiral using 

the golden angle, they will pack together most efficiently. For 

instance, suppose that, instead of the golden angle, you try a 
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FIGURE s. 
Successive dots arranged at angles of 137.5° to each other along a 
tightly wound spiral (not shown) naturally fall into two families of 
loosely wound spirals that are immediately apparent to the eye. Here 
there are 8 spirals in one direction and 13 in the other-consecutive 
Fibonacci numbers. 

divergence angle of 90°, which divides 360° exactly. Then 

successive primordia are arranged along four radial lines 

forming a cross. In fact, if you use a divergence angle that is a 

rational multiple of 360°, you always get a system of radial 

lines. So there are gaps between the lines and the primordia 

don't pack efficiently. Conclusion: to fill the space efficiently, 

you need a divergence angle that is an irrational multiple of 

3600-a multiple by a number that is not an exact fraction. 

But which irrational number? Numbers are either irrational or 
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not, but-like equality in George Orwell's Animal Farm

some are more irrational than others. Number theorists have 

long known that the most irrational number is the golden 

number. It is "badly approximable" by rational numbers, and 

if you quantify how badly, it's the worst of them all. Which, 

turning the argument on its head, means that a golden diver

gence angle should pack the primordia most closely. Vogel's 

computer experiments confirm this expectation but do not 

prove it with full logical rigor. 

The most remarkable thing Douady and Couder did was to 

obtain the golden angle as a consequence of simple dynamics 

rather than to postulate it directly on grounds of efficient 

packing. They assumed that successive elements of some 

kind-representing primordia-form at equally spaced inter

vals of time somewhere on the rim of a small circle, represent

ing the apex; and that these elements then migrate radially at 

some specified initial velocity. In addition, they assume that 

the elements repel each other-like equal electric charges, or 

magnets with the same polarity. This ensures that the radial 

motion keeps going and that each new element appears as far 

as possible from its immediate predecessors. It's a good bet 

that such a system will satisfy Vogel's criterion of efficient 

packing, so you would expect the golden angle to show up of 

its own accord. And it does. 

Douady and Couder performed an experiment-not with 

plants, but using a circular dish full of silicone oil placed in a 

vertical magnetic field. They let tiny drops of magnetic fluid 

fall at regular intervals of time into the center of the dish. The 

drops were polarized by the magnetic field and repelled each 

other. They were given a boost in the radial direction by mak

ing the magnetic field stronger at the edge of the dish than it 
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was in the middle. The patterns that appeared depended on 

how big the intervals between drops were; but a very preva

lent pattern was one in which successive drops lay on a spiral 

with divergence angle very close to the golden angle, giving a 

sunflower-seed pattern of interlaced spirals. Douady and 

Couder also carried out computer calculations, with similar 

results. By both methods, they found that the divergence 

angle depends on the interval between drops according to a 

complicated branching pattern of wiggly curves. Each section 

of a curve between successive wiggles corresponds to a partic

ular pair of numbers of spirals. The main branch is very close 

to a divergence angle of 137.5°, and along it you find all possi

ble pairs of consecutive Fibonacci numbers, one after the 

other in numerical sequence. The gaps between branches rep

resent "bifurcations," where the dynamics undergoes signifi

cant changes. 

Of course, nobody is suggesting that botany is quite as per

fectly mathematical as this model. In particular, in many 

plants the rate of appearance of primordia can speed up or 

slow down. In fact, changes in morphology-whether a given 

primordium becomes a leaf or a petal, say-often accompany 

such variations. So maybe what the genes do is affect the tim

ing of the appearance of the primordia. But plants don't need 

their genes to tell them how to space their primordia: that's 

done by the dynamics. It's a partnership of physics and genet

ics, and you need both to understand what's happening. 

Three examples, from very different parts of science. Each, 

in its own way, an eye-opener. Each a case study in the ori

gins of nature's numbers-the deep mathematical regularities 

that can be detected in natural forms. And there is a common 

thread, an even deeper message, buried within them. Not that 
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nature is complicated. No, nature is, in its own subtle way, 

simple. However, those simplicities do not present them

selves to us directly. Instead, nature leaves clues for the math

ematical detectives to puzzle over. It's a fascinating game, 

even to a spectator. And it's an absolutely irresistible one if 

you are a mathematical Sherlock Holmes. 





EPILOGUE 

MORPHOMATICS 

I have another dream. 

My first dream, the Virtual Unreality Machine, is just a 

piece of technology. It would help us visualize mathematical 

abstractions, encourage us to develop new intuition about 

them, and let us ignore the tedious bookkeeping parts of 

mathematical inquiry. Mostly, it would make it easier for 

mathematicians to explore their mental landscape. But 

because they sometimes create new bits of that landscape as 

they wander around it, the Virtual Unreality Machine would 

playa creative role, too. In fact, it-or something like it-will 

soon exist. 

I call my second dream "morphomatics." It is not a matter 

of technology; it is a way of thinking. Its creative importance 

would be immense. But I have no idea whether it will ever 

come into being, or even whether it is possible. 

I hope it is, because we need it. 

The three examples in the previous chapter-liquid drops, 

foxes and rabbits, and petals-are very different in detail, but 

they illustrate the same philosophical point about how the 

universe works. It does not go directly from simple laws, like 

the laws of motion, to simple patterns, like the elliptical 

145 
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orbits of the planets. Instead, it passes through an enormous 

tree of ramifying complexity, which somehow collapses out 

again into relatively simple patterns on appropriate scales. 

The simple statement "a drop falls off the tap" is accom

plished by way of an amazingly complex and surprising 

sequence of transitions. We do not yet know why those transi

tions derive from the laws of fluid flow, although we have 

computer evidence that they do. The effect is simple, the 

cause is not. The foxes, rabbits, and grass playa mathematical 

computer game with complicated and probabilistic rules. Yet 

important features of their artificial ecology can be repre

sented to 94-percent accuracy by a dynamical system with 

four variables. And the number of petals on a plant is a conse

quence of a complex dynamic interaction between all the pri

mordia, which just happens to lead, via the golden angle, to 

Fibonacci numbers. The Fibonacci numbers are clues for the 

mathematical Sherlock Holmeses to follow up-they are not 

the master criminal behind those clues. In this case, the math

ematical Moriarty is dynamics, not Fibonacci-nature's mech

anisms, not nature's numbers. 

There is a common message in these three mathematical 

tales: nature's patterns are "emergent phenomena." They 

emerge from an ocean of complexity like Botticelli's Venus 

from her half shell-unheralded, transcending their origins. 

They are not direct consequences of the deep simplicities of 

natural laws; those laws operate on the wrong level for that. 

They are without doubt indirect consequences of the deep sim

plicities of nature, but the route from cause to effect becomes so 

complicated that no one can follow every step of it. 

If we really want to come to grips with the emergence of 

pattern, we need a new approach to science, one that can 
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stand alongside the traditional emphasis on the underlying 

laws and equations. Computer simulations are a part of it, but 

we need more. It is not satisfying to be told that some pattern 

occurs because the computer says so. We want to know why. 

And that means we must develop a new kind of mathematics, 

one that deals with patterns as patterns and not just as acci

dental consequences of fine-scale interactions. 

I don't want us to replace current scientific thinking, 

which has brought us a long, long way. I want us to develop 

something that complements it. One of the most striking fea

tures of recent mathematics has been its emphasis on general 

principles and abstract structures-on the qualitative rather 

than the quantitative. The great physicist Ernest Rutherford 

once remarked that "qualitative is just poor quantitative," but 

that attitude no longer makes much sense. To turn Ruther

ford's dictum on its head, quantitative is just poor qualitative. 

Number is just one of an enormous variety of mathematical 

qualities that can help us understand and describe nature. We 

will never understand the growth of a tree or the dunes in the 

desert if we try to reduce all of nature's freedom to restrictive 

numerical schemes. 

The time is ripe for the development of a new kind of 

mathematics, one that possesses the kind of intellectual rigor 

that was the real point of Rutherford's criticism of sloppy 

qualitative reasoning, but has far more conceptual flexibility. 

We need an effective mathematical theory of form, which is 

why I call my dream "morphomatics." Unfortunately, many 

branches of science are currently headed in the opposite 

direction. For example, DNA programming is often held to be 

the sole answer to form and pattern in organisms. However, 

current theories of biological development do not adequately 
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explain why the organic and inorganic worlds share so many 

mathematical patterns. Perhaps DNA encodes dynamic rules 

for development rather than just encoding the final developed 

form. If so, our current theories ignore crucial parts of the 

developmental process. 

The idea that mathematics is deeply implicated in natural 

form goes back to D'Arcy Thompson; indeed, it goes back to 

the ancient Greeks, maybe even to the Babylonians. Only very 

recently, however, have we started to develop the right kind 

of mathematics. Our previous mathematical schemes were 

themselves too inflexible, geared to the constraints of pencil 

and paper. For example, D'Arcy Thompson noticed similari

ties between the shapes of various organisms and the flow 

patterns of fluids, but fluid dynamics as currently understood 

uses equations that are far too simple to model organisms. 

If you watch a single-celled creature under a microscope, 

the most amazing thing you see is the apparent sense of pur

pose in the way it flows. It really does look as if it knows 

where it is going. Actually, it is responding in a very specific 

way to its environment and its own internal state. Biologists 

are beginning to unravel the mechanisms of cellular motion, 

and these mechanisms are a lot more complex than classical 

fluid dynamics. One of the most important features of a cell is 

the so-called cytoskeleton, a tangled network of tubes that 

resembles a bale of straw and provides the cell interior with a 

rigid scaffolding. The cytoskeleton is amazingly flexible and 

dynamic. It can disappear altogether, under the influence of 

certain chemicals, or it can be made to grow wherever support 

is required. The cell moves about by tearing down its 

cytoskeleton and putting it up somewhere else. 

The main component of the cytoskeleton is tubulin, which 

I mentioned earlier in connection with symmetries. As I said 
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there, this remarkable molecule is a long tube composed of 

two units, alpha- and beta-tubulin, arranged like the black 

and white squares of a checkerboard. The tubulin molecule 

can grow by adding new units, or it can shrink by splitting 

backward from the tip, like a banana skin. It shrinks much 

faster than it grows, but both tendencies can be stimulated by 

suitable chemicals. The cell changes its structure by going 

fishing with tubulin rods in a biochemical sea. The rods 

themselves respond to the chemicals, which cause them to 

extend, collapse, or wave around. When the cell divides, it 

pulls itself apart on a tubulin web of its own creation. 

Conventional fluid dynamics this is not. But it is undeni

ably some kind of dynamics. The cell's DNA may contain the 

instructions for making tubulin, but it doesn't contain the 

instructions for how tubulin should behave when it encoun

ters a particular kind of chemical. That behavior is governed 

by the laws of chemistry-you can no more change it by writ

ing new instructions in the DNA than you can write DNA 

instructions that cause an elephant to fly by flapping its ears. 

What is the fluid-dynamics analogue for tubulin networks in a 

chemical sea? Nobody yet knows, but this is clearly a ques

tion for mathematics as well as for biology. The problem is 

not totally unprecedented: the dynamics of liquid crystals, a 

theory of the patterns formed by long molecules, is similarly 

puzzling. Cytoskeleton dynamics, however, is vastly more 

complicated, because the molecules can change their size or 

fall apart completely. A good dynamical theory of the 

cytoskeleton would be a major component of morphomatics, 

if only we had the foggiest idea how to understand the 

cytoskeleton mathematically. It seems unlikely that differen

tial equations will be the right tool for such a task, so we need 

to invent whole new areas of mathematics, too. 
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A tall order. But that is how mathematics grew in the first 

place. When Newton wanted to understand planetary motion, 

there was no calculus, so he created it. Chaos theory didn't 

exist until mathematicians and scientists got interested in that 

kind of question. Morphomatics doesn't exist today; but I 

believe that some of its bits and pieces do-dynamical sys

tems, chaos, symmetry breaking, fractals, cellular automata, to 

name but a few. 

It's time we started putting the bits together. Because only 

then will we truly begin to understand nature's numbers

along with nature's shapes, structures, behaviors, interac

tions, processes, developments, metamorphoses, evolutions, 

revolutions .... 

We may never get there. But it will be fun trying. 
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Bees, 77,88 
Belousov, B. P., 78-79 
Bernoulli, Daniel, 65-66 
Betatubulin, 82, 149 
Betelgeuse II, 71 
Bifurcations, 95-98, 101, 142 
Big Bang theory, 85 
Bipeds, 102 
Birds, 8 
Blastula, 83, 85 
Body, human: the brain, 124, 

128; the heart, 11, 27, 
80-81,93,120;and 
rhythms, 93; and symme
try, 74-75, 77 

Bohm, David, 109 
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Born, Max, 109 
Botany, 142 
Botticelli, Sandro, 147 
Boundary conditions, 67 
Brahe, Tycho, 14 
Brain, 124, 128 
Bravais, Auguste, 138 
Bravais, Louis, 138 
Brenner, Michael, 132 
Bristol University, 130 
Britain, 70, 78 
Buckminsterfullerene, 81 
Butterflies, 112-13, 118, 120, 

124-25,137 
B-Z reaction, 78-80 

Calculus, 16-18, 38, 51, 54 
Camels, 32-33, 36, 99-100 
Cannonball, motion of, 49-54 
Carbon atoms, 81 
Carroll, Lewis, 29 
Cats, 4 
Cause and effect, 119-20 
Cells, 81-83, 133, 148-50 
Centrosomes,82 
Ceres, 61 
Chance,44-45,107-26 
Change, rate of, 15-17, 

47-59,65-67 
Chaos theory, 3, 10, 108-27, 

150; and chaotic control, 
123-24; and complexity 
theory, 134; and the con
stants of change, 47, 48; 
and the discovery of 
chaos, 113; and rhythms, 
120; and strange attrac
tors, 117-18 

Chargaff, Erwin, 20 
Cheetahs, 100 
Chemistry, 19, 78-79, 81, 

104, 128; and cell struc
ture, 149; and complexity 
theory, 135 

Chlorophyll, 135 
Circles, 7, 14, 38,49, 67 
Circular ripples, 77, 78 
Classical mechanics, 109-26 
Clouds, 9 
Clover, 4 
Cockroaches, 102 
Cohen, Jack, 79, 128 
Color, 70, 79-80, 81 
Comets, 14, 26 
Complexity theory, 128-43 
Computers, 113, 133-37, 

141-42, 147; and analysis 
of the evolution of the 
eye, 21-22, 23; and data 
structures, 37-38; design 
of, 27; graphics created 
by, 6; used to check 
Delaunay's work, 57 

Cones, 7 
Constellations, 24 
Control systems, 26-27 
Couder, Yves, 137, 139, 

141-42 
Counting, 31-33 
CPGs (central pattern genera-

tors),98-101 
Credit cards, 29 
Curie, Marie, 73 
Curie, Pierre, 73 
Curie's Principle, 85, 86-87 
Curiosity-driven research, 28 
Curves, 15, 66-67; and attrac-

tors, 117; and electromag
netism, 69; in equations 
for population dynamics, 
115-16; and the golden 
angle, 142 



Cyberpunk,47 
Cycles, biological, 94 
Cytoskeletons, 148-49 

D' Alembert, Jean Le Rond, 
64,66 

Darwin, Charles, 21, 22 
Data structures, 37-38 
Decoherence, 110 
Deer, 100 
Delaunay, Charles-Eugene, 

57,58 
Delta (0), 122 
Deltas, 87-88 
Desert, 7-8, 87, 100 
Determinism, 107-26, 134 
Devil's Causeway, 83 
Differential equations, 55, 65, 

114-15,132 
Differentiation, 51, 54 
Digital-watch displays, 88. 

See also Liquid crystals 
Dirac, Paul, 54 
Disease, 27, 28, 120 
Dishwashers, 11, 124 
Distance: metaphorical feel-

ing of, 38; pattern of, 
50-51 

Ditto, William, 123 
DNA (deoxyribonucleic 

acid), 19, 20, 105, 135, 
137,147-49 

Dogs, 100. See also Gait 
analysis 

Douady, Stephane, 137, 139, 
141-42 

Drake, Stillman, 50 
Drops, 110-13, 120-22, 

129-32, 146 
Drugs, 37 
Drums, 66, 67 
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Dupont, T. F., 131 
Dynamical Systems Collec

tive, 111 

Earth, 4, 53, 68; and New
ton's law of gravitation, 
56-58; rotation of the 
Moon around, 25 

Earthquakes, 7 
Eclipses, 14, 26 
Ecological systems, 113-16, 

134-35,146 
Eggbeaters, 119-20 
Eggers, J., 131 
Einstein, Albert, 67, 85, 

108-10, 125-26 
Elasticity, 16, 141 
Electricity, 16, 80, 88, 90; 

and the constants of 
change, 55; and vibra
tions, 67-70 

Electromagnetism, 68-70, 89, 
90 

Electrons, 85 
Elephants, 99, 149 
Elizabeth I (queen), 68 
Ellipses, 7, 15,49,56-57,83, 

145-46 
Embryos, 82-83,85 
Emergent phenomena, 147-48 
Energy: conservation of, 58; 

and mass, Einstein's the
ory of, 67 

English language, 42 
Equations: differential, 55, 

65,114-15,132;wave, 55, 
65-67, 71 

Ergs (sand oceans), 7-8 
Euclid,43 
Euler, Leonhard, 64-66 
Europa, 6,24-25 



lSI INDEX 

Evolution, 21-22, 23, 137 Galaxies, 83 
Exceptions, possibility of, Galileo, 48, 49,50 

44-45 Galvani, Luigi, 68 
Eye, evolution of, 21-22 Ganymede, 6,24-25 

Garfinkel, Alan, 123 
Faraday, Michael, 68, 69 Gas clouds, 5 
Farming, 27, 28 Gastrulation, 83 
Fax machines, 29 Gauss, Carl Friedrich, 33, 
Feigenbaum, Mitchell, 61-62 

122-23 Gazelles, 88 
Fibonacci, Leonardo, 136 Genetics, 19-21, 27-28, 88, 
Fibonacci numbers, 136, 138, 105, 147-49; and flower 

139, 142, 146 structure, 135, 136-37; 
Fireflies, 94, 103-4 and primordia, 142 
Fish, 8, 78 Geology, 10, 87 
Flowers, 4, 135-39, 145; and Georgia Institute of Technol-

Fibonacci numbers, 139, ogy, 58 
142; and symmetry, 75, Germany, 65, 70,95 
77,88 Gilbert, William, 68 

Fluid dynamics, 16, 55, 88; Giraffes, 8 
and cell structure, Glycerol, 132 
148-49; and change, Goal-oriented research, 
110-11, 124-25; and com- 28-29, 71 
plexity theory, 129-32; God,54,89-90, 108, 126 
and drops of water, Golden angle, 138-42, 146 
110-13,120-22,129-32, Gravity, theory of, 4-5, 
146; and vibrations, 67 52-53,56-57,89 

Formulas, 59, 114-15 Growth rates, 21 
Foxes, 127-28, 133-34, 

145-46 Half-life, of atoms, 125 
Fractals, 3, 10, 150 Heart, 11,27,80-81,93,120 
Fractions, invention of, 33 Heat, 16, 54. See also Tem-
Franklin, Benjamin, 68 perature 
Freezers, 13-14 Heraclitus, 47 
Frequencies, 63, 70 Hertz, Heinrich, 70 
Frog embryos, 82-83, 85 Hexagons, 7, 76-77,83,89 
Frustration, 42 Hilda group, 25 
Functions, 36-37,54,62 Hildebrand, Milton, 99 
Fungi,114 Hitchhiker's Guide to the 

Galaxy, The (Adams), 
Gait analysis, 94-105 107-8 
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Holography, 29 
Honeycombs,2,77,83,88 
Hopf, Eberhard, 95-96 
Hopf bifurcation, 95-98, 101 
Horses, 99, 100. See also Gait 

analysis 
Hoyt, D. F., 103 
Hurricanes, 7, 113 
Hydrazine, 124 
Hydrogen atoms, 84 
Hyenas, 2 

Ice crystals, 2 
Icosahedrons,81-82,85,88 
Ideal forms, 49 
Imagination, 28, 62 
Influenza virus, 82 
Insects, 4, 8, 71, 103-4. See 

also Butterflies; Fireflies 
Instinct, mathematical, 13-14 
Integers, 35 
Integration, 51, 54 
Invariance principles, 85 
Inverse-square law, 56, 58 
10,6,24-25 

Janus, 54 
Jellyfish, 8, 88 
Jupiter, 4, 6, 24-26, 53 

Kangaroos, 101 
Kepler, Johannes, 1-2,4,48; 

analysis of snowflakes, 2, 
14, 89; and planetary 
motion, 14, 56, 57 

Keynes, John Maynard, 48 

Lake Huron, 88 
Laplace, Pierre-Simon de, 

107,108,111-12,119 

Lateral thinking, 111 
Leibniz, Gottfried, 16 
Leopards, 8 
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Light, 16,55,69-70, 104; and 
the eye, evolution of, 21, 
22, 23; and holography, 
29 

Liquid crystals, 88, 89, 149 
Liquid helium, 122 
Liquids. See Fluid dynamics 
Locomotion, 8-9,128. See 

also Gait analysis 
Locusts, 120 
Logic, and proof, 39-40, 43 
Loops, 117, 126 

McGlade, Jacquie, 133-34 
Magic, vs. rationality, 48 
Magnetism, 16, 55, 62, 90, 

122; and complexity the
ory, 141-42; in liquid
crystal displays, 88; and 
vibrations, 67-71 

Majikthise (fictional charac-
ter) 131 

Mandelbrot, Benoit, 10 
Marconi, Guglielmo, 70 
Mars, 4,25-26,57 
Mass: and acceleration, in 

Newton's law of motion, 
53-54; and energy, Ein
stein's theory of, 67 

Material, elastic bending of, 
55 

Mathematics: applied, 17,61; 
and formulas, 59, 114-15; 
and functions, 36-37, 54, 
62; pure, 17,61 

Maxwell, James Clerk, 69-71, 
90 

Measurement, 35, 112-13 
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Mendel, Gregor, 19 
Mercury, 4, 25 
Meteorites, 45 
Meteorology, 26, 110 
Meteor showers, 14 
Methane, 81 
Microscopes, 148 
Microtubles, 82, 85 
Mirollo, Renato, 103-4 
Mirror symmetry, 74, 75-77, 

83,89-90 
Molecular structure, 19-20, 

81,88,90 
Momentum, laws of, 58 
Moon, 3-4,25-26,53, 

56-58 
Morphology, 142 
Morphomatics, 145, 147, 149, 

150 
Moscow State University, 58 
Motion, 15-16, 145-146; and 

acceleration, 15-17, 
50-54; Newton's law of, 
53-55,63,65,108,133; 
qualitative aspects of, 59; 
and time reversal, 97 

Movies, 40 
Multiplication, 4-5, 35-36 
Mutations, 21, 22 
Muybridge, Eadweard, 94 
Mysticism, 48 

Nagel, Sidney, 132 
NASA (National Aeronautics 

and Space Administra
tion),124 

Natural selection, 21, 22 
Nautilus, 88 
Newton, Isaac, 18, 47-49, 

110, 149; law of motion, 

15-16,53-55,63,65,108, 
133; and patterns of 
velocity, 50-52; theory of 
gravity, 4,53,56-57; and 
the vision of a clockwork 
universe, 107 

Newton, the Man (Keynes), 
48 

Nilsson, Daniel, 21, 22 
Nonlinear dynamics. See 

Chaos theory 
Nothing, ideal of, 33 
Numbers: complex, 34-35; 

Fibonacci, 136, 138, 139, 
142, 146; as the heart of 
mathematics, 31-37; 
imaginary, 34-35; irra
tional/rational, 34, 
140-41; positive/negative, 
33-35, 52; prime, 43-44; 
real, 34-35, 114; sets of, 
37; as the simplest of 
mathematical objects, 
3-4; whole/natural, 35, 
114 

Numerology, 4-6, 128 

Objectivity, 47 
On Growth and Form 

(Thompson), 105 
Operations, 35-37 
Orion, 6 
Orion's belt, 24 
Orwell, George, 141 
Oscillators, 94-105 
Oxygen consumption, 103 

Parabolas, 49, 65 
Pauli, Wolfgang, 89-90 
Pelger, Susanne, 21-22 



Pendulums, 122 
Pentagons, 6-7 
Peregrine, Howell, 130, 131, 

132 
Period-doubling cascade, 122 
Periodicity, 66, 115 
Peskin, Charles, 104 
Petals. See Flowers 
Phase portraits, 116 
Phase space, 116, 120-21 
Phi (4)), 139 
Photocopying machines, 29 
Photography, high-speed, 

93-94 
Pi (n), 38, 122 
Pigs, 114-16, 133 
Pineapples, 136 
Ping-Pong balls, 118 
Pitch,64 
Plagues, 120 
Planetary motion, 1-6, 14, 

146, 150; and the inverse
square law, 56, 58; and 
Newton's law of gravita
tion, 56-57; Ptolemy's 
theory of, 49; and random 
drift, 58-59; and reso
nances, 24-26; and rota
tions, 75; and the three
body problem, 57-58, 59, 
124; and the two-body 
problem, 58 

Plants, 128. See also Farm
ing; Flowers 

Poetry, 13 
Poincare, Henri, 113-15, 117, 

120-22 
Politics, 14 
Pond, tossing pebble into, 

77-84,96 

Population dynamics, 
114-16, 132-36 

Postmodernism,47 
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Potato farming, 27, 28 
Pragmatism, 18, 28, 39 
Predator-prey ecological sys-

tems, 113-16 
Prediction, 26-29, 107-8, 

110-12,118-19. See also 
Chance 

Primordia, 137-38, 141 
Princeton University, 109 
Principia Mathematica (Rus-

sell and Whitehead), 38 
Prominence, metaphorical 

feeling of, 38 
Proof, 39-45 
Proportionality, constant of, 

53-54 
Proteins, 82, 135 
ptolemy, 49 
Puddles, 97 
Puzzles, solving, 14 
Pyramids, 81 
Pythagoras, 38 

Quadrupeds, 102 
Qualitative description, 59, 

122,147 
Quantum mechanics, 

109-10,126,128 

Rabbits, 127-28, 133-36, 
145, 146 

Radar, 28, 70 
Radio, 28, 70 
Radioactivity, 73, 109, 125 
Rainbows, 2, 7 
Raindrops, 83, 97 
Rand, David, 133 
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Rationality, 48 Six-Cornered Snowflake, The 
Rayleigh, Lord, 130 (Kepler), 1-2 
Realism, biological, 132, Smith, Hugh, 103 

135 Snail shells, 19-21 
"Reductionist nightmare," Snakes,8-9 

128 Snowflakes, 2-3, 14,89 
Reflections, 74-77,97 Solar System, 3-5, 25, 56-58. 
Reification, 36-37. See also See also Planetary motion 

"Thingification" Sound,16,55,67,70,96.See 
Relativity, principle of, 85 also Vibration 
Religion, 14 Space: structure of, 85; three-
Replication, 88 dimensional,71 
Resonances, 24-26 Spacecraft,27-28 
Retina, 21 Speed, constant of, 50 
Rhythms, 93-105, 111, 124 Spiderwebs, 71 
Ripples, 7, 77-84, 96 Spirals, 7-8, 19-21, 83-85, 
Rotation, 75-77, 83, 88-89 88; and the golden angle, 
Royal Institute, 68 139-42; and primordia, 
Russell, Bertrand, 38 138 
Russia, 78-79 Spots, 1, 2, 8 
Rutherford, Ernest, 147 Square roots, 34, 35-37 

Stanford, Leland, 93-94 
Sahara desert, 7-8. See also Starfish, 4, 8, 88 

Desert; Sand dunes Stars: as spheres, 83; as 
Sand dunes, 7-8,87-88 viewed by ancient civi-
Satellites, 11, 27, 124 lizations, 24 
Saturn, 4 Statistical self-similarity, 10 
Scale independence, 9-10 Steady state systems, 95-96, 
Science (journal), 103 98 
Seabeds, 87-88 Storytelling, and mathemati-
Sheep,32,36 cal proofs, 39-43 
Shells, 8, 19-21,88 Striped patterns, 1, 2, 8, 88, 
Sherlock Holmes (fictional 137 

character), 2-3, 143, 146 Strogatz, Steven, 103-4 
Shi, X. D., 132 Submarines, 124 
SHIP IDOCK Theorem, 41, Subtraction, 35-36 

42-43 Sumerians, 48 
Sidewinder, 8-9 Sun,4-5,26,56-58,61.See 
Similarity solution, 132 also Planetary motion; 
Single-celled organisms, 148 Solar System 



Sunflowers, 136 
Superstrings, 125-26 
Surveying, 62 
Switzerland, 64, 65 
Symmetry, 1, 8-9, 72-91; 

axis, 74, 75-76; bilateral, 
74-75, 83, 99; breaking, 
spontaneous, 73-74, 
85-87,96,98,101-4,150; 
and gait analysis, 99, 
101-2; mirror, 74, 
75-77,83,89-90; time
translation, 96-98; trans
formations, 36, 76 

Synchronization, 80, 94, 
103-5 

Tables, of numbers, 37 
Tadpoles, 129 
Target patterns, 79-80 
Taylor, Brook, 64, 66 
Taylor, R. c., 103 
Technology transfer, 88, 89 
Telegraphy, 62,70,71 
Telescopes, 26 
Television, 27-28, 62, 70, 72 
Temperature, 27, 34, 55 
Tennis, 123 
Tetrahedrons, 81 
Thailand, 94 
Theft,37 
"Thingification," 36-37, 75 
Thompson, D'Arcy, 105, 148 
Tides, 7,26, 120 
Tigers, 1, 2, 8, 88, 95, 137 
Tiles, 76, 77 
Time: axis, 96-97; reversal, 

97; structure of, 85 
Transformations, 36, 74 
Translations, 76, 77,97-98 

Triangles, 6-7,38 
Trigonometry, 64 
Truffles, 114-16, 133 
Tubulin, 82, 148-49 
Turbulence, 123, 124 

Uniformity, 84 
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Universe, theories of, 83, 
85-86,90-91 

University of California at 
Santa Cruz, 111 

University of Chicago, 132 
Uranium atoms, 109 

Van Iterson, G., 139 
Velocity, 15-16, 50-52, 54, 

141. See also Acceleration 
Venus, 4 
Vibration, 28, 61, 62-72, 117; 

and change, 122, 125, 
126; and heat, 81; and 
Hopf bifurcation, 96 

Videotape, 70-72 
Violins, vibration of, 28, 61, 

62-72. See also Vibration 
Virtual Unreality Machine, 

vii-x,145 
Viruses, 82, 86, 88 
Vision, 21-22, 128 
Vogel, H., 139-41 
Volcanos, 83 
Volta, Alessandro, 68 
Vowels, 42-43 
Vroomfondel (fictional char

acter), 131 

Warwick University, 133 
Water, dripping, 110-13, 

120-22, 129-32, 146. See 
also Fluid dynamics 
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Wave(s), 7, 77, 124; ampli
tude of, 64; equations, 55, 
65-67,71; patterns, and 
heart beats, 80-81; right
ward-traveling, 65; and 
vibrations, 64, 67,70 

Weather patterns, 26, 110, 
120 

Weight, 35, 52-53 
Whirlpools, 83 
Whitehead, Alfred North, 38 
William IV (king), 68 
Wilson, Howard, 133 
Wind,87 

Winfree, Arthur, 79 
Worms, 8 

Xerography, 29 
Xia, Zhihong, 58 
X rays, 20 

Year, length of, 3 
Yorke, Jim, 123 

Zebras, 8, 88 
Zero, concept of, 33 
Zhabotinskii, A. M., 78-79 
Zoetrope, 94 
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